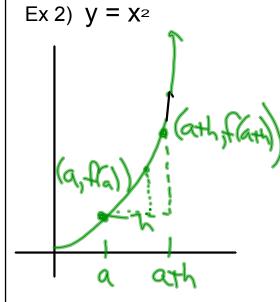

## 2.4 Rates of Change and Tangent Lines Day 1

Slope of a line = 
$$\Delta y \Delta x$$

Ex 1) 
$$y = x^2$$
 [0, 3]




average rate of change = amount of change time it takes

Find the slope of the secant line

$$\Delta y = \frac{9-0}{3-0} = 13$$

Slope of a line =  $\Delta y$   $\Delta x$ Ex 2)  $y = x_2$ 



Find the slope at a given point

$$m = \frac{\Delta y}{\Delta x} = \frac{f(a+h) - f(a)}{a+h - a}$$

=f(a+h)-f(a)

If we want the slope at a given point, we wanth so Thus—

$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$$

- Slope at a given point
- Slope of the tangent line
- Numerical Derivative

Ex 3) Find the slope of 
$$y = x^2 + 2$$
 at  $x = 1$ 

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(a+h) - f(1)}{h}$$

=  $\lim_{h \to 0} \frac{(a+h)^2 + 2 - (a+h)^2 - f(1)}{h} = \lim_{h \to 0} \frac{(a+h)^2 + 2 - 3}{h}$ 

=  $\lim_{h \to 0} \frac{(a+h)^2 + 2 - (a+h)^2 - (a+h)^2$ 

Ex4) Find an equation for the line tangent  $y = \frac{7}{12}$ to the graph of  $y = x^2 + 2$  at x = 1x = 2.

Note: Nomal Means L 3 = 3(1) + 6  $3 = 3 \times + 1$  1 = 6