

Ex 4)
$$f(x) = x^{4} - x^{3} + x^{2} - 2x + 6$$
 (1,5)
Find equations for the tangent and
normal lines at x = 1.
 $f'(x) = 4x^{3} - 3x^{3} + 3x - 2$
 $f'(i) = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
tangent
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1) - 2 = 1 = m$ Sope of
 $1 = 4(1)^{3} - 3(1)^{3} + 2(1$

Ex 5)
$$f(x) = x^3 + 3x^2 - 3x + 6$$

Nhere is the tangent line horizontal?
 $M = 0$
 $f'(x) = 3x^3 + 6x - 3$
 $D = 3x^3 + 6x - 3$
 $D = 3(x^3 + 6x - 3)$
 $D = 3(x^3 + 6x - 1)$
 $x = -2 \pm \sqrt{4} - 40$
 $x = -2 \pm \sqrt{4} - 40$

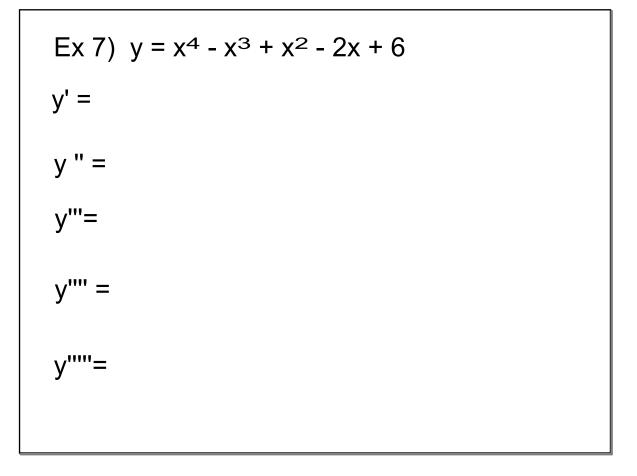
Ex 6) Suppose u(1) = 2, u'(1) = 3, v(1) = -2, v'(1) = 4

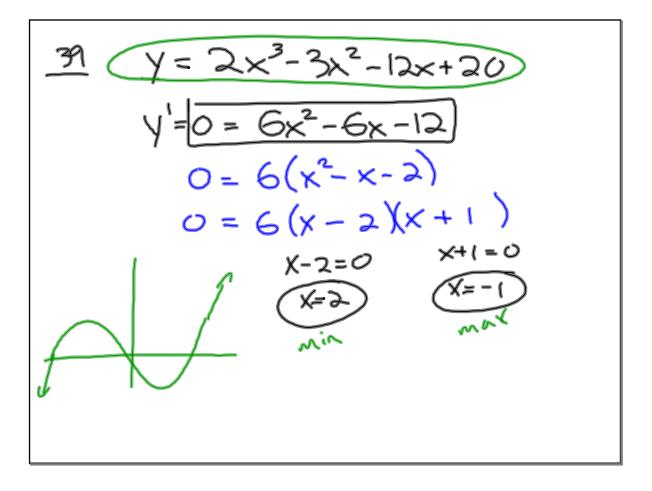
$$\frac{d}{dx} (uv) \qquad \qquad \frac{d}{dx} 2u - 4v + 3uv$$

$$= u \cdot v' + u' \cdot v$$

$$= 2 \cdot 4 + 3 \cdot 2$$

$$= 8 + -6 = 2$$





35
$$y = x^{-1} + x^{2}$$

 $y' = -1x^{-3} + 2x = \frac{-1}{x^{2}} + 2x$
 $y'' = 2x^{-3} + 2 = \frac{2}{x^{3}} + 2$
 $y''' = -6x^{-4} = \frac{-6}{x^{4}}$
 $y'''' = 24x^{-5} = \frac{24}{x^{5}}$