INTRO TO PARTICLE MOTION PRACTICE (No calculator!)

Skip 279,12,14

- 1) A particle travels along the x-axis so that at any time 5) $t \ge 0$, its position is given by $x(t) = t^3 - 9t^2 + 24t + 2$. For what value(s) of tis the velocity equal to zero?
 - A) t=4, only
- $V(t) = x'(t) = 3t^2 18t + 24$
- B) t=2, only

=3(+2-6++8)

D) t=3, only

- = 3(L-7)(L-4)
- E) t = 2 and t = 4

C) t = 0 and t = 3

1=7 E=4

七八	Sup	7
(2	2) A par	tic

- cle moves on the x-axis so that its position is given by x(t) = A - 6R + 8 for $t \ge 0$. For what times tis the velocity of the particle increasing?
- A) t>0B) $0 < t < \sqrt{3}$
- V(+) = 4+3-12t

- $\alpha(4) = 12 + \frac{2}{3} 12$
- D) 0 < t < 1
- =12 (42-1) E)1<7<\(\frac{1}{3}\)
 =|2(\frac{1}{4}+1)(\frac{1}{4}-1)

- The position of a particle moving on a horizontal axis for time t, where $t \ge 0$, is $S(t) = 3 \sin \frac{1}{2}t + 1$. What is
 - the average velocity of the particle for $0 \le t \le \frac{3\pi}{2}$?

 A) $\frac{\pi}{\sqrt{2}}$ $\frac{S(\frac{3\pi}{2}) S(0)}{\frac{3\pi}{2}} = \frac{3\sqrt{2} + 1 1}{3\sqrt{2}}$ B) $\sqrt{2}$
- $= 3\sqrt{2}, 2 = \sqrt{2}$

- What is the maximum acceleration of a particle on the interval $0 \le t \le 3$ if its position is given by

 $V(t) = 4t^{3} - 12t^{2}$ $a(t) = 12t^{2} - 24t$

- s(t) = A 4 B?
- A) 36

4)

- B) -16
- C) 0
- D) -12
- E) 24
- a'(1)=246-24 = 24 (f4) = 0 max 7 / + 3 a(1)

The table below shows the position of a particle, 5, at various times, t, as it moves along a straight line.

				1	
t (sec)	1.0	1.4	1.8	2.2	2.6
s (ft)	6.0	7.0(10.0	15.0	21.0

What is an estimated value of the velocity of the particle at time t=2?

- A) 15 ft/sec
- (B) 12.5 ft/sec
- C) 20 ft/sec
- D) 10 ft/sec
- E) 5 ft/sec
- 15-10 = 5 = 5
- = 5/5 = 35=12.5
- If the position of a particle moving on the x-axis at 6) any time t is given by $x(t) = 2t^3 - 3t^2$, what is the
- V(F)=6+2-6+

average acceleration of the particle for $0 \le t \le 3$?

- B) 18
- C) 8
- $V(3) V(0) = \frac{36}{3} = 12$
- D) 9
- E))12

$$V(3) = 6.9 - 6.3$$

Chamkule A particle moves along the x-axis so that at any time $t \ge 0$, its position is given by $x(t) = 2t + \sin(\pi t)$. What is the acceleration of the particle at time

$$t=\frac{3}{2}$$
?

- A) $-\pi^2$
- $a(t) = -\pi^2 \sin(c\pi t)$
- B) 2 **С**) п
- a(3)=-172. Sin 35
- D)) π2

- = 172

A particle moves along a coordinate line so that its position is given by $S(t) = 2 \sin \frac{1}{2}t + \frac{1}{2} \cos 2t$ for $0 \le t \le 2\pi$. What is the acceleration of the particle at $t = \pi$?

sur tris

A)
$$-\frac{3}{2}$$

when

Jist)

B)
$$-\frac{1}{2}$$

D)
$$-\frac{5}{2}$$

E)
$$\frac{5}{2}$$

10) A particle moves along the x-axis in such a way that its position at any time t is given by $x(t) = A - 8t^3 + 18t^2 + 2$ for t > 0. At what time is acceleration of the particle equal to 36?

11) A particle moves on the x-axis such that its position at any time t > 0 is given by $x(t) = t^3 - 9t^2 + 24t$. What is the velocity of the particle when its acceleration is zero?

12). A particle moves along a horizontal axis so that its position is defined by $S(t) = 4 \cos \frac{\pi}{2} t$ for $0 \le t \le 5$. What is the velocity of the particle at the time its acceleration is first equal to zero?

E)
$$-\pi^2$$

13) A particle moves along a horizontal coordinate line so that its position at time
$$t$$
, $0 \le t \le 4$ is given by
$$S(t) = t^4 - \frac{16}{3}t^3 + 8t^2 + 1$$
 For what times t is the velocity of the particle decreasing?

$$A) \frac{2}{3} < t < 2$$

particle decreasing?

$$V(t) = 4t^3 - 16t^2 + 16t$$

 $a(t) = 12t^2 - 32t + 16$

B)
$$t > \frac{2}{3}$$

14)

Ald 2 table The table below shows velocity of a particle at various times tof a particle that moves along a horizontal line.

				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
t (sec)	0.5	1.0	1.5	2.0	2.5
v (m/sec)	8.3	9.2	9.8	10.6	

What is an approximate value of the acceleration of the particle at time t=2?

$$\Delta V = 11-9.8 = 1.2$$
 $\Delta V = 2.5-1.5$