

Find y^{\prime}
Ex 1) $y=\sin x-\tan x+5 x$

$$
y^{\prime}=\cos x-\sec ^{2} x+5
$$

Ex 2) $y=x \csc x$

$$
u \cdot v^{\prime}+v \cdot u^{\prime}
$$

$$
\begin{aligned}
& y^{\prime}=x \cdot-\csc x \cot x+\csc x \cdot 1 \\
& y^{\prime}=\csc x(-x \cot x+1)
\end{aligned}
$$

Find y^{\prime}

$$
\begin{aligned}
& \text { Ex 4) } y=\frac{u}{\cos x} 1+\sin x \quad \\
& y^{\prime}=\frac{(1+\sin x)(-\sin x)-(\cos (x) \cdot \cos (x))}{(1+\sin x)^{2}} \\
& y^{\prime}=\frac{-\sin x-\sin ^{2} x-\cos ^{2} x=-\sin x-1\left(\sin ^{2} x+\cos ^{2} x\right)}{(1+\sin x)^{2}} \\
& \begin{aligned}
\begin{array}{l}
\sin ^{2} x+\cos ^{2} x=1
\end{array}=\frac{-\sin x-1}{(1+\sin x)^{2}}=\frac{1(\sin x+1)}{1+\sin x(1+\sin x)} \\
-1=-\sin ^{2} x-\cos ^{2} x
\end{aligned}
\end{aligned}
$$

Ex 5) Write an equation for the tangent line and normal line to graph

23

$$
S=t^{3}-6 t^{2}+9 t
$$

$$
a(t)=?
$$

$$
v(0)=0
$$

$$
v=3 t^{2}-12 t+9
$$

$$
a=6 t-12 \rightarrow a(1)=6 \cdot 1-12=-6
$$

$$
3 t^{2}-12 t+9=0
$$

$$
a(3)=6 \cdot 3-12=6
$$

$$
3\left(t^{2}-4 t+3\right)=0
$$

$$
3(t-1)(t-3)=0
$$

$$
t=1 \quad t=3
$$

$$
\begin{aligned}
& x=0 \quad y=x+\cos x \text { at }(0,1) \\
& y^{\prime}=1+-\sin x \\
& =1+-\sin 0=1+0 \\
& =1=m \\
& \text { Tangent } m=1 \\
& y-1=1(x-0) \\
& \rightarrow(+1,0) \\
& \sin \theta=y \\
& \sin 0=0
\end{aligned}
$$

(19) $s=t^{2}-3 t+2 \rightarrow \quad \square$

Change disection when $s^{\prime}=0$

$$
\begin{aligned}
S^{\prime}=V & =2 T-3 \quad V=2 T-3 \\
0 & =2 T-3 \\
\frac{3}{2} & =\frac{2 T}{2}+T=1.2
\end{aligned}
$$

