

Ex 2) Given

$$f(1) = 2$$
 $f'(1) = 3$ $f'(2) = -4$
 $g(1) = 2$ $g'(1) = -3$ $g'(2) = 5$
If $h(x) = f(g(x))$
Find $h'(1) = (cog)(x) = f'(g(x)) = (f'(g(x)) \cdot g'(x))$
 $= f'(g(x)) \cdot g'(x)$
 $= f'(g(x)) \cdot g'(x)$
 $= f'(g(x)) \cdot g'(x)$
 $= f'(g(x)) \cdot g'(x)$

Ex 3) $x = 3\cos(2t)$ $y = 2\sin(3t)$ $y = 2\sin(3t)$ $= -6\sin(2t)$ Find $\frac{dy}{dx}$ $t = \pi/3$ 2(05(3t)·3 6cos(3t) dy dt dt dx $= \frac{6(\cos(3t)) \cdot 1}{-65i}$ $= -\cos(3t)$ $= -\cos(3t) - \cos(3t)$ 45 = -(OST) Sinal

Ex 4) x = 3†² + 2 $\frac{2\times}{4t} = 6t$ y = †³ $\frac{dy}{dt} = 3t$ Find $\frac{dy}{dx} t = 1$ = dy dt. dt dx X2.1_=

1.
$$\frac{d}{dx} \sin^2(x^3) = \frac{d}{dx} (\sin(x^3))^2$$

= $2 \sin(x^3) \cdot \cos(x^3) \cdot 3x^2$
= $6x^2 \sin(x^3) (\cos(x^3))^2$
2. $f(x) = \sec(2x)$. Find $f'(\pi/6)$ 73
 $f'(x) = 5x-4$
 $f'(x) = 5x-4$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 \cdot 1$
 $f' = x \cdot 2(1 - 2x)^2 - 2 + (1 - 2x)^2 +$

4.
$$y = (1 + \cos^2(7x))^3 = (1 + (\cos(5x))^2)^3$$

 $\int_{-\infty}^{\infty} = 3(1 + (\cos(5x))^2)^2 \cdot 2(\cos(5x)) \cdot -\sin(5x) \cdot 7$