3.7 Implicit Differentiation

Another technique used you have more than / "y"

1. Differentiate both sides with respect to x.
2. Get all terms with $d y / d x$ to one side of the equation.
3. Factor out $d y / d x$. (if needed)
4. Solve for $d y / d x$

Ex 3) $2 x^{3}+5 y^{2}=10 \quad$ Find $\frac{d y}{d x}$

$$
\begin{aligned}
& 6 x^{2}+10 y \cdot \frac{d y}{d y}=0 \\
& 10 y\left(\frac{d y}{d x}=-6 x^{2}\right. \\
& \frac{d y}{d x}=\frac{-6 x^{2}}{10 y}=\frac{-3 x^{2}}{5 y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 4) } \begin{array}{l}
x^{5}+4 y^{3}-2 y^{2}=50 \\
5 x^{4}+12 y^{2} \cdot \frac{d y}{d x}-4 y \cdot \frac{d y}{d x}= \\
12 y^{2} \cdot \frac{d y}{d x}-4 y \cdot \frac{d y}{d x}=-5 x^{4} \\
\\
\frac{d y}{d x}\left(12 y^{2}-4 y\right)=-5 x^{4} \\
\\
\frac{d y}{d x}=-\frac{d y}{12 x^{2}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 5) } x^{5}+\left(4 x \cdot y^{4}\right)-5 y^{5}=4 \quad \text { Find } \frac{d y}{d x} \\
& 5 x^{4}+\left(4 \cdot y^{3}+3 y^{2} \cdot \frac{d y}{d x} \cdot 4 x\right)-25 y^{4} \cdot \frac{d y}{d x}=0 \\
& 12 x y^{2} \cdot \frac{d y}{d x}-25 y^{4} \cdot \frac{d y}{d x}=-5 x^{4}-4 y^{3} \\
& \frac{d y}{d x}\left(12 x y^{2}-25 y^{4}\right)=-5 x^{4}-4 y^{3} \\
& \frac{d y}{d x}=\frac{-5 x^{4}-4 y^{3}}{12 x y^{2}-25 y^{4}}
\end{aligned}
$$

