

Ex 1) $\quad u=x^{3}$		
$\frac{d}{d x} \sec -1\left(x^{3}\right)=$	Ex 2) $\frac{d}{d x} \cot -1(3 x)=$ $\frac{d}{d x}$$=\frac{1}{\left\|x^{3}\right\| \sqrt{\left(x^{3}\right)^{2}-1}} \cdot 3 x^{2}$	$\frac{d}{d x}=\frac{-1}{1+(3 x)^{2}} \cdot 3$
	$=\frac{3 x^{2}}{\left\|x^{3}\right\| \sqrt{x^{6}-1}}$	
	$=\frac{3 x^{2}}{x^{2}\|x\| \sqrt{x^{6}-1}}$	
	$=\frac{-3}{1+9 x^{2}}$	
$\|x\| \sqrt{x^{6}-1}$		

$$
\begin{array}{|l|l|}
& \frac{d}{d x} \csc -1 \frac{x}{3}= \\
= & \frac{-1}{\left|\frac{x}{3}\right| \sqrt{\left(\frac{x}{3}\right)^{2}-1}} \cdot \frac{1}{3} \\
=\frac{-\frac{1}{3}}{d x} \cot -1 \sqrt{ }(x)= \\
\frac{1}{3}|x| \sqrt{\frac{x^{2}}{9}-1} & =\frac{-1}{1+(\sqrt{x})^{2}} \cdot \frac{1}{2}(x)^{-1 / 2} \\
=\frac{-1}{|x| \sqrt{\frac{x^{2}}{9}-1}} \\
=\frac{-1}{2(1+x) \sqrt{x}}=\frac{-1}{2 \sqrt{x}(1+x)} \\
=\frac{-1}{|x| \sqrt{\frac{1}{9}\left(x^{2}-9\right)}}=\frac{-1}{|x| \frac{1}{3}\left(\sqrt{\left.x^{2}-9\right)}\right.}=\frac{-3}{|x| \sqrt{x^{2}-9}}
\end{array}
$$

$$
\begin{aligned}
& \text { Ex 5) } \\
& =\frac{d}{d x}\left(\sec ^{-1 x}+\sqrt{\left(x^{2}+1\right)}=\left(x^{2}+1\right)^{1 / 2}\right. \\
& =\frac{1}{1 x \mid \sqrt{x^{2}-1}}+\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot x x \\
& =\frac{1}{1 x \mid \sqrt{x^{2}-1}}+\frac{x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Ex 6) Write an equation for the line tangent to

$$
\begin{aligned}
& y=\tan -x \text { at } x=1 \\
& y^{\prime}=\frac{1}{1+x^{2}}=\frac{1}{1+1^{2}}=\frac{1}{2}=m \quad\left(1, \frac{\pi}{4}\right) \\
& y=\tan ^{-1}(1) \\
& \tan y=1 \quad y=\pi / 4{ }^{52 / 2 / 2}
\end{aligned}
$$

Ex 7) Write an equation for the line tangent to

$$
\begin{aligned}
& y=\arcsin x \text { at } x=0.5 \\
& y=\sin ^{-1} x \quad y=\frac{\pi}{6} \\
& \begin{aligned}
y & =\frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{1}{\sqrt{1-\left(\frac{1}{2}\right)^{2}}}=\frac{1}{\sqrt{1-\frac{1}{4}}}=\frac{1}{\sqrt{2 / 4}}
\end{aligned} \\
& y-\frac{\pi}{6}=\frac{2 \sqrt{3}}{3}\left(x-\frac{1}{2}\right)= \\
& y=\arcsin .5 \\
& \sin y=.5 \\
& y=\frac{\pi}{6} \\
& =\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}=m
\end{aligned}
$$

Ex 8)

$$
\begin{aligned}
& \left.y(1)=3(1)^{2}+4(1)+2=9\right) \\
& y^{\prime}(1)=6 x+4=6(1)+4=10=m=\frac{\text { Changeiny }}{\text { Changein }}
\end{aligned}
$$

$y^{-1}(9)=1$ since $(1,9)$ is a point on " $y^{\prime \prime} \ldots$
$(9,1)$ is a point on $^{\prime \prime} y^{\prime \prime}$. (9,1) is a point $\min ^{\prime \prime} y^{-1}$

$$
\left(y^{-1}\right)^{\prime}(9)=\frac{1}{10}=\frac{\text { Changeinx }}{\text { Changeiny }}
$$

