Section 4.2 Exercises

1. (a) Yes.

(b)
$$f'(x) = \frac{d}{dx}x^2 + 2x - 1 = 2x + 2$$

 $2c + 2 = \frac{2 - (-1)}{1 - 0} = 3$
 $c = \frac{1}{2}$.

3. (a) No. There is a verticle tangent at x = 0.

5. (a) Yes.

(b)
$$f'(x) = \frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$
$$\frac{1}{\sqrt{1 - c^2}} = \frac{(\pi/2) - (-\pi/2)}{1 - (-1)} = \frac{\pi}{2}$$
$$\sqrt{1 - c^2} = \frac{2}{\pi}$$
$$c = \sqrt{1 - 4/\pi^2} = 0.771.$$

- 9. (a) The secant line passes through (0.5, f(0.5)) = (0.5, 2.5)and (2, f(2)) = (2, 2.5), so its equation is y = 2.5.
 - (b) The slope of the secant line is 0, so we need to find c such that f'(c) = 0.

$$1-c^{-2} = 0$$

$$c^{-2} = 1$$

$$c = 1$$

$$f(c) = f(1) = 2$$

The tangent line has slope 0 and passes through (1, 2), so its equation is y = 2.

10. (a) The secant line passes through (1, f(1)) = (1, 0) and $(3, f(3)) = (3, \sqrt{2})$, so its slope is

$$\frac{\sqrt{2}-0}{3-1} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}.$$

The equation is $y = \frac{1}{\sqrt{2}}(x-1) + 0$

or
$$y = \frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}$$
, or $y \approx 0.707x - 0.707$.

(b) We need to find c such that $f'(c) = \frac{1}{\sqrt{2}}$.

$$\frac{1}{2\sqrt{c-1}} = \frac{1}{\sqrt{2}}$$

$$2\sqrt{c-1} = \sqrt{2}$$

$$c-1 = \frac{1}{2}$$

$$c = \frac{3}{2}$$

$$f(c) = f\left(\frac{3}{2}\right) = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$$

The tangent line has slope $\frac{1}{\sqrt{2}}$ and passes through

$$\left(\frac{3}{2}, \frac{1}{\sqrt{2}}\right). \text{ Its equation is } y = \frac{1}{\sqrt{2}} \left(x - \frac{3}{2}\right) + \frac{1}{\sqrt{2}} \text{ or } y = \frac{1}{\sqrt{2}} x - \frac{1}{2\sqrt{2}}, \text{ or } y \approx 0.707x - 0.354.$$

11. Because the trucker's average speed was 79.5 mph, and by then Mean Value Theorem, the trucker must have been going that speed at least once during the trip.

15. (a)
$$f'(x) = 5 - 2x$$

Since $f'(x) > 0$ on $\left(-\infty, \frac{5}{2}\right)$, $f'(x) = 0$ at $x = \frac{5}{2}$, and $f'(x) < 0$ on $\left(\frac{5}{2}, \infty\right)$, we know that $f(x)$ has a local maximum at $x = \frac{5}{2}$. Since $f\left(\frac{5}{2}\right) = \frac{25}{4}$, the local maximum occurs at the point $\left(\frac{5}{2}, \frac{25}{4}\right)$. (This is also a global maximum.)

(b) Since
$$f'(x) > 0$$
 on $\left(-\infty, \frac{5}{2}\right)$, $f(x)$ is increasing on $\left(-\infty, \frac{5}{2}\right]$.

(c) Since
$$f'(x) < 0$$
 on $\left(\frac{5}{2}, \infty\right)$, $f(x)$ is decreasing on $\left[\frac{5}{2}, \infty\right)$.

17. (a)
$$h'(x) = -\frac{2}{x^2}$$

Since h'(x) is never zero is undefined only where h(x) is undefined, there are no critical points. Also, the domain $(-\infty, 0) \cup (0, \infty)$ has no endpoints. Therefore, h(x) has no local extrema.

- (b) Since h'(x) is never positive, h(x) is not increasing on any interval.
- (c) Since h'(x) < 0 on $(-\infty, 0) \cup (0, \infty)$, h(x) is decreasing on $(-\infty, 0)$ and on $(0, \infty)$.

19. (a)
$$f'(x) = 2e^{2x}$$

Since f'(x) is never zero or undefined, and the domain of f(x) has no endpoints, f(x) has no extrema.

- (b) Since f'(x) is always positive, f(x) is increasing on $(-\infty, \infty)$.
- (c) Since f'(x) is never negative, f(x) is not decreasing on any interval.

21. (a)
$$y' = -\frac{1}{2\sqrt{x+2}}$$

In the domain $[-2, \infty)$, y' is never zero and is undefined only at the endpoint x = -2. The function y has a local maximum at (-2, 4). (This is also a global maximum.)

- (b) Since y' is never positive, y is not increasing on any interval.
- (c) Since y' is negative on $(-2, \infty)$, y is decreasing on $[-2, \infty)$.

23,

(a)
$$f'(x) = x \cdot \frac{1}{2\sqrt{4-x}} (-1) + \sqrt{4-x}$$

= $\frac{-3x+8}{2\sqrt{4-x}}$

The local extrema occur at the critical point $x = \frac{8}{3}$ and at the endpoint x = 4. There is a local (and absolute) maximum at $\left(\frac{8}{3}, \frac{16}{3\sqrt{3}}\right)$ or approximately (2.67, 3.08), and a local minimum at (4, 0).

(b) Since
$$f'(x) > 0$$
 on $\left(-\infty, \frac{8}{3}\right)$, $f(x)$ is decreasing on $\left(-\infty, \frac{8}{3}\right]$.

(c) Since
$$f'(x) < 0$$
 on $\left(\frac{8}{3}, 4\right)$, $f(x)$ is decreasing on $\left[\frac{8}{3}, 4\right]$.

25.

[-5, 5] by [-0.4, 0.4]

(a)
$$h'(x) = \frac{(x^2+4)(-1)-(-x)(2x)}{(x^2+4)^2} = \frac{x^2-4}{(x^2+4)^2}$$
$$= \frac{(x+2)(x-2)}{(x^2+4)^2}$$

The local extrema occur at the critical points, $x = \pm 2$. There is a local (and absolute) maximum at $\left(-2, \frac{1}{4}\right)$ and a local (and absolute) minimum at $\left(2, -\frac{1}{4}\right)$.

- (b) Since h'(x) > 0 on $(-\infty, -2)$ and $(2, \infty)$, h(x) is increasing on $(-\infty, -2]$ and $[2, \infty)$.
- (c) Since h'(x) < 0 on (-2, 2), h(x) is decreasing on [-2, 2].

27.

[-4, 4] by [-6, 6]

- (a) $f'(x) = 3x^2 2 + 2\sin x$ Note that $3x^2 - 2 > 2$ for $|x| \ge 1.2$ and $|2\sin x| \le 2$ for all x, so f'(x) > 0 for $|x| \ge 1.2$. Therefore, all critical points occur in the interval (-1.2, 1.2), as suggested by the graph. Using grapher techniques, there is a local maximum at approximately (-1.126, -0.036), and a local minimum at approximately (0.559, -2.639).
- (b) f(x) is increasing on the intervals ($-\infty$, -1.126] and [0.559, ∞), where the interval endpoints are approximate.
- (c) f(x) is decreasing on the interval [-1.126, 0.559], where the interval endpoints are approximate.
- 43. (a) Since v'(t) = 1.6, v(t) = 1.6t + C. But v(0) = 0, so C = 0 and v(t) = 1.6t. Therefore, v(30) = 1.6(30) = 48. The rock will be going 48 m/sec.
 - (b) Let s(t) represent position. Since s'(t) = v(t) = 1.6t, $s(t) = 0.8t^2 + D$. But s(0) = 0, so D = 0 and $s(t) = 0.8t^2$. Therefore, $s(30) = 0.8(30)^2 = 720$. The rock travels 720 meters in the 30 seconds it takes to hit bottom, so the bottom of the crevasse is 720 meters below the point of release.
 - (c) The velocity is now given by v(t) = 1.6t + C, where v(0) = 4. (Note that the sign of the initial velocity is the same as the sign used for the acceleration, since both act in a downward direction.) Therefore, v(t) = 1.6t + 4, and $s(t) = 0.8t^2 + 4t + D$, where s(0) = 0 and so D = 0. Using $s(t) = 0.8t^2 + 4t$ and the known crevasse depth of 720 meters, we solve s(t) = 720 to obtain the positive solution $t \approx 27.604$, and so $v(t) = v(27.604) = 1.6(27.604) + 4 \approx 48.166$. The rock will hit bottom after about 27.604 seconds, and it will be going about 48.166 m/sec.