
Our Chapter 3 Group Project

Ken

[Feel free to use your TI but remember to show all work]

The graph of the derivative, f'(x), of a continuous function f is shown below.

graph of f'(x)

Based on the graph above, where does the graph of f(x) have critical values? $\chi = 3$, $\chi = 1$, $\chi = 2$ (a)

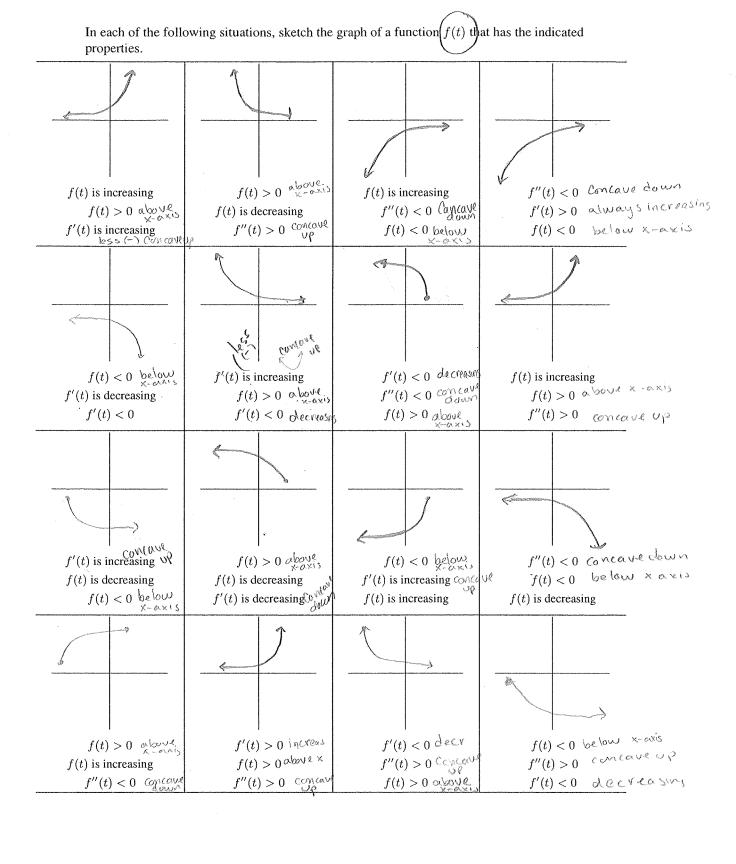
On what interval(s) is the graph of f increasing? Explain fully. (b)

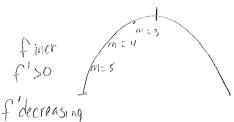
[-3,1] (2,00)

When f'is greater than 0, or where f'graph lies above x-axis

On what interval(x) is the graph of f decreasing? Explain fully. (c)

> (10,-37 T1,23


where f's less thian 0, or where f'graph lies below x-axis


Find the value of c that satisfies the Mean Value Theorem for the function $f(x) = \sqrt{1 - x} \quad \text{for the interval } \begin{bmatrix} 0 & 1 \end{bmatrix}$ $f(x) = \sqrt{1-x}$ for the interval [-8, 1]

Oslopof endpoints $\frac{f(b)-f(a)}{b-a} = \frac{f(i)-f(-8)}{1-8} = \frac{0-3}{9} = \frac{1}{2}$

2VI-X 3) Setequal Solve

 $-\frac{1}{3} = \frac{1}{2^{1/2}} = \frac{3}{2} = \sqrt{1-x}$ $\frac{1}{3} = 1-x$ $\frac{1}{3} = 1-x$

