4-6 Related Rates		
 Compare two or more variables with respect to time. 		
$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = \frac{\Delta \mathbf{r}}{\Delta \mathbf{t}}$	How fast is the radius changing?	
$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\Delta V}{\Delta t}$	How fast is the volume changing?	
$\frac{dh}{dt} = \frac{\Delta h}{\Delta t}$	How fast is the height changing?	

Ex 1)
$$y = x^2 + 3x$$

Find dy/dt when x = 3 and dx/dt = 2.
 $1 \cdot dy = \partial x \cdot dx + 3 \cdot dx$
 $dt = \partial x \cdot dx + 3 \cdot dx$
 $dt = \partial (3) \cdot \partial + 3 \cdot 2$
 $dt = 12 + 6 = 18$

1. Label all variables.

- 2. Write an equation relating the variables.
- 3. Differentiate explicitly with respect to t.
- 4. Substitute into the derivative equation.
- 5. Solve

Ex 4) An airplane is flying at an altitude of 2 mi. If the distance, s, from the plane to a person on the ground is decreasing at 300 mph, what is the speed of the plane when s is 3 miles?

$k=2mi$ $\lambda = 3$	$= -300 \text{mph} \qquad N = 3 \text{min} = 0$ $\frac{dx}{dt} = 7$ $\frac{dx}{dt} = 7$
$\chi^{2} + \chi^{2} = 3^{2}$ $\chi^{2} + 4 = 9$ $\chi^{2} - 5$	$\chi^2 + h^2 = \Lambda^2$ $\partial x \cdot \partial x + \partial \cdot \partial h = \partial x \cdot \partial x$ $dt = \partial x \cdot \partial x$
X=±VS	$2.15 \frac{1}{04} + 2.20 = 2.3.200$ $2.15 \frac{1}{04} = -1800$
	$\frac{dx}{dt} = -\frac{1800}{\sqrt{5}} = -\frac{900}{\sqrt{5}} = -\frac{400}{\sqrt{5}} \cdot 5 \cdot 7 \cdot 7 \cdot 5$

