5.4 Fundamental Theorem of Calculus

Fundamental Theorem of Calculus

$$
\frac{d}{d x} \int_{a^{2}}^{x} f(t) d t=f(x)
$$

derivative of the Integral = original function

* The process of integration Edifferientian are inverses of each other.

$$
\begin{aligned}
\frac{d}{d x}(f(x)-f(a)) & =\frac{d}{d x}(f(x)-\#) \\
& =f(x)+0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 1) } \frac{d}{d x} \int_{7}^{\frac{x}{2 t}} 2 \mathrm{dt}=2 x \\
& \left.\frac{d}{d x}\left(\frac{R t^{2}}{d}\right)\right|_{7} ^{x}=\frac{d}{d x}\left(x^{2}-49\right) \\
& =2 x+0=2 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 2) } \frac{d}{d x} \int_{13}^{x} \cos t d t= \\
& \begin{aligned}
&\left.\frac{d}{d x}(\sin t)\right|_{13} ^{x}=\frac{d}{d x}(\sin x-\sin 13) \\
&=\cos x+0 \\
&\operatorname{Ex} 3) \frac{d}{d x} \int_{1,000,007}^{x}=x^{3}=\cos x \\
&\left.\frac{d}{d x}\left(\frac{n^{4}}{4}\right)\right|_{1,000,007} ^{x}=\frac{d}{d x}
\end{aligned} \begin{aligned}
& \left(\frac{x^{4}}{4}-\frac{1,000,007^{4}}{4}\right) \\
& =x^{3}+0 \\
& =x^{3}
\end{aligned}
\end{aligned}
$$

Ex 4) $\frac{d}{d x} \int_{x}^{7} 2 t d t=\Theta \frac{d}{d x} \int_{7}^{\infty} 2 t \cdot d t=-2 x$

Ex 5) $\frac{d}{d x} \int_{x}^{5} \sqrt{(u+1)} d u=$
Od

$$
\frac{d}{d x} \sqrt{\sqrt{\sqrt{x}}+1} d y=-\sqrt{x+1}
$$

$$
\text { Ex 6) } \begin{aligned}
\frac{d}{d x} \sqrt{2} \cdot \frac{x^{2} t}{2 t} d t & =2\left(x^{2}\right) \cdot 2 x=4 x^{3} \\
\left.\frac{d}{d x}\left(t^{2}\right)\right|_{3} ^{2} & =\frac{d}{d x}\left(x^{4}-9\right) \\
& =4 x^{3}+0=4 x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 7) } \frac{d}{d x} \int_{4}^{x^{2}}(\cos k) d k=2 x \cos \left(x^{2}\right) \\
& \begin{aligned}
\frac{d}{d x}\left(\sin k \int_{4}^{x^{2}}\right) & =\frac{d}{d x}\left(\sin \left(x^{2}\right)-\sin 4\right) \\
& =2 x \cdot \cos x^{2}-0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 8) } \frac{d}{d x} \int_{x}^{x^{2}}\left(2 t^{2}+3\right) d t= \\
& \begin{aligned}
\left.\frac{d}{d x}\left(\frac{2}{3} t^{3}+3 t\right)\right|_{x} ^{x^{2}} & =\frac{d}{d x}\left(\frac{2}{3}\left(x^{2}\right)^{3}+3\left(x^{2}\right)-\left(\frac{2}{3} x^{3}+3 x\right)\right) \\
& =\frac{d}{d x}\left(\frac{2}{3} x^{6}+3 x^{2}-\frac{2}{3} x^{3}-3 x\right) \\
& =4 x^{5}+6 x-2 x^{2}-3
\end{aligned} \\
& \begin{array}{l}
\frac{d}{d x}\left(\int_{0}^{\left(x^{2}-2\right.}\left(2 t^{2}+3\right) d t-\int_{0}^{x}\left(2 t^{2}+3\right) d t\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 9) } \frac{d}{d x} \int_{x^{2}}^{x^{3}}(\sin t) d t= \\
& \left.\frac{d}{d x}(-\cos t)\right|_{x^{2}} ^{x^{3}}=\frac{d}{d x}\left(-\cos \left(x^{3} x^{3}++\cos \left(x^{2}\right)\right)\right. \\
& \begin{array}{l}
\left.=\sin \left(x^{3}\right) \cdot 3 x^{2}-\sin \left(x^{2}\right) \cdot 2 x\right) \\
=3 x^{2} \sin \left(x^{2}\right)-2 x \sin \left(x^{2}\right)
\end{array} \\
& =3 x^{2} \sin \left(x^{3}\right)-2 x \sin \left(x^{2}\right) \\
& \int_{a}^{b} v(t) \cdot d t=S(b)-S(a)
\end{aligned}
$$

