6.1 Slope Fields day 2

Draw a slope field for each of the following differential equations. Each tick mark is one unit.
$m=0$ when $y=0$

$$
\int(x+1)=\frac{x^{2}}{2}+x+c
$$

$\frac{d y}{x}=0$ $m=2$ when $y=1$ $m=4$ when $y=2$
$2 . \frac{d y}{d x}=2, M=-2 \quad$ When $y=-1$

1. $\frac{d y}{d x}=x+1$

$m=0$, when $x=-1$
$m=1$, when $x=0$
$m=2$, when $x=1$

$$
m=0
$$

3. $\frac{d y}{d x}=x+y$
4. $\frac{d y}{d x}=2 x$

5. $\frac{d y}{d x}=y-1$

6. $\frac{d y}{d x}=-\frac{y}{x}$

Match the slope fields with their differential equations.
(A)
(B)

(C)
(D)

a
9. $\frac{d y}{d x}=2-y$
10. $\frac{d y}{d x}=x$

Match the slope fields with their differential equations.
(A)

(B)

(C)

(D)

11. $\frac{d y}{d x}=0.5 x-1$
12. $\frac{d y}{d x}=0.5 y$
13. $\frac{d y}{d x}=-\frac{x}{y}$
14. $\frac{d y}{d x}=x+y \quad A$
15.

The slope field from a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=x^{2}$
(B) $y=e^{x}$
(C) $y=e^{-x}$
(D) $y=\cos x$
(E) $y=\ln x$

16.

The slope field for a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=\sin x$
(B) $y=\cos x$
(C) $y=x^{2}$
(D) $=\frac{1}{6} x^{3}$
(E) $y=\ln x$

18. Consider the differential equation given by $\frac{d y}{d x}=\frac{x}{y}$.
(A) On the axes provided, sketch a slope field for the given differential equation.

(B) Sketch a solution curve that passes through the point $(0,1)$ on your slope field.
(C) Find the particular solution $y=f(x)$ to the differential equation with the initialcondition $f(0)=1$.
(D) Sketch a solution curve that passerngh the point $(0,-1)$ on your slope field.
(E) Find the partieutar solution $y=f(x)$ to the differential equation with the initial condition $f(0)=-1$.

