7.1 Integral as Net Change

Linear Motion Revisited

$$
\begin{aligned}
& \text { Position }=S(t)=x(t)=\int V(t) \cdot d t \\
& \text { Velocity }=S^{\prime}(t)=v(t)=S a(t) \cdot d t \\
& \text { Acceleration }=S^{\prime \prime}(t)=V^{\prime}(t)=a(t)
\end{aligned}
$$

Displacement ${ }^{-}=$Final position - initial position

$$
\begin{aligned}
& 5(0)=0 \\
& 8-4=4
\end{aligned}
$$

$v(t)=0$ with directions
Total Distance Traveled =

$$
\int_{a}^{b}|v(t)| d t=
$$

$$
8+4=12
$$

$$
E \times \text { 1) } v(t)=6 t^{2}-18 t+12, \quad 0 \leq t \leq 2
$$

a.) Determine when the particle is moving to the right, left, stopped.

$$
\begin{array}{ll}
6 t^{2}-18 t+12=0 & t=1 \\
6\left(t^{2}-3 t+2\right)=0 & t=2 \\
6(t-1)(t-2)=0 &
\end{array}
$$

b.) Find the particles displacement.

$$
\text { 0.) Find the particles displacement. } \text { final position - initial position }
$$

$$
\begin{aligned}
& \text { 0.) Find the particles displacement. } \\
& \text { final pos, ion - initial position } \\
& \int_{0}^{2}\left(6 t^{2}-18 t+12\right) d t=2 t^{3}-9 t^{2}+\left.12 t\right|_{0} ^{2}=(16-36+24)-(0)
\end{aligned}
$$

c.) If $s(0)=3$, find its final position.

$$
3+4=7
$$

d.) Find the total distance traveled.
e.) Find the acceleration at $\mathrm{t}=0$.

$$
\begin{aligned}
V(t) & =6 t^{2}-18 t+12 \\
a(t) & =12 t-18 \\
a(0) & =12(0)-18 \\
& =-18
\end{aligned}
$$

$$
2 t^{3}-9 t^{2}+\left.12 t\right|_{0} ^{1}+\left|2 t^{3}-9 t^{2}+12 t\right|_{1}^{2} \mid
$$

$$
\begin{gathered}
(2-9+12)-0+\mid(16-36+24)-12 \\
5+|4-5|
\end{gathered}
$$

$$
5+1=6
$$

$$
\text { Ex 2) } V=6 \sin (3 t), \quad 0 \leq t \leq(\pi / 2)
$$

a.) Determine when the particle is moving to the right, left stopped

b.) Find the particles displacement.
b.) Find the particles displacement. position

$$
6 \int_{0}^{\pi / 2}(\sin (3 t) d t)=6 \cdot \frac{1}{3} \int \sin u d u=-2 \cos u
$$

c.) If $s(0)=3$, find its final position

$$
3+2=5
$$

d.) Find the total distance traveled.

$$
\begin{array}{rl}
u d u=-2 \cos u \\
=-2 \cos (3 t)_{0}^{3 / 2} & u=3 t \\
& d u=3 d t \\
=-2 \cdot 0--2 \cdot 1 & \frac{1}{3} d u=d t \\
& =0+2
\end{array}
$$

e.) Find the acceleration at $t=0$.

$$
\begin{aligned}
& V(t)=6 \sin (3 t) \\
& V^{\prime}(t)=a(t)=6 \cos (3 t) \cdot 3 \\
& a(0)=18 \cos (3 t)
\end{aligned}
$$

$$
=18 \cos (0)
$$

$$
=18.1
$$

$$
=18
$$

$$
\text { Ex 3) } v=\frac{t}{1+t^{2}} \quad 0 \leq t \leq 3
$$

a.) Determine when the particle is moving to the right, left, stopped.

$$
\frac{t}{1+t^{2}}=0 \quad t=0
$$

b.) Find the particles displacement.

$$
\int_{0}^{3} \frac{t}{1+t^{2}} \cdot d t=\begin{aligned}
& d u=2 t \cdot d t \\
& \frac{1}{2} d u=t d t
\end{aligned}\left|\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln \left(1+t^{2}\right)\right|_{0}^{3}
$$

c.) If $\mathrm{s}(0)=3$, find its final position.

$$
3+\frac{1}{2} \ln 10
$$

d.) Find the total distance traveled.

$$
\frac{1}{2} \ln 10
$$

e.) Find the acceleration at $t=0$.

$$
\begin{aligned}
& v(t)=\frac{t}{1+t^{2}} \\
& a(t)=\frac{\left(1+t^{2}\right)(1)-2 t \cdot t}{\left(1+t^{2}\right)^{2}} \\
& a(0)=\frac{\left(1+0^{2}\right)(1)-2(0)^{2}}{\left(1+0^{2}\right)^{2}}=\frac{1-0}{1}
\end{aligned}
$$

Homework

$$
7.1 \# 1,3,5,7,9
$$

