7.1 Integral as Net Change

Linear Motion Revisited

Position =
$$S(t)=X(t)=(V(t))dt$$

Velocity = $S'(t)=V(t)=(S_a(t))dt$
Acceleration = $S''(t)=V'(t)=a(t)$

Displacement = Final position - initial position

Total Distance Traveled =

8+4=(12)

Ex 1)
$$v(t) = 6t^2 - 18t + 12$$
, $0 \le t \le 2$

a.) Determine when the particle is moving to the right, left, stopped.

$$\frac{t^2 - 18t + 12 = 0}{(t^2 - 3)(t - 2) = 0} = \frac{t}{t} = \frac{t}{t}$$
b.) Find the particles displacement.

$$\frac{t^2 - 18t + 12}{(t^2 - 3)(t - 2) = 0} = \frac{t}{t} = \frac{t}{t}$$
b.) Find the particles displacement.

$$\frac{t^2 - 18t + 12}{(t^2 - 18t + 12)} = \frac{t}{t} = \frac{t}{t}$$
c.) If $s(0) = 3$, find its final position.

$$3 + 4 = 7$$
d.) Find the total distance traveled.

$$\frac{t^2 - 18t + 12}{(t^2 - 18t + 12)} = \frac{t}{t} = \frac{t}{t}$$
e.) Find the acceleration at $t = 0$.

$$2t^2 - 4t + 12t + 12t + 12t^2 = \frac{t^2 - 12t}{t^2 - 12t}$$
e.) Find the acceleration at $t = 0$.

$$2t^2 - 4t + 12t + 12t^2 +$$

Ex 3)
$$v = \underline{t}$$
 $0 \le t \le 3$
 $1 + t^2$

(0,3) rever

a.) Determine when the particle is moving to the right, left, stopped.

b.) Find the particles displacement.

- c.) If s(0)=3, find its final position.

d.) Find the total distance traveled.

e.) Find the acceleration at t=0.

$$\frac{(1+0)^{2}}{(1+0)^{2}} = \frac{(1+0)^{2}}{(1+0)^{2}} = \frac{1}{1-0}$$

Homework

7.1 #1, 3, 5, 7, 9