7.2 Areas in the Plane

Find the area of the shaded region.

$$
\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{d}^{b}(f(x)-g(x)) d x
$$

$$
\int_{a}^{b}(g(x)-f(x)) d x+\int_{b}^{c}(f(x)-g(x)) d x
$$

Ex 1) Find the area between the curves.

$$
\begin{aligned}
& \quad=\int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& \\
& =\frac{x^{2}}{3}-\left.\frac{x^{4}}{4}\right|_{0} ^{1}=\left(\frac{1}{3}-\frac{1}{4}\right)-(0-0) \\
& \\
& x_{0}^{3}=x^{3}=\frac{4}{12}-\frac{3}{12}=\left(\frac{1}{12}\right) \\
& x^{2}-x^{2}=0 \\
& x^{2}(x-1)=0 \\
& x=0 \quad x=1
\end{aligned}
$$

Ex 2) Find the area between the curves. [0, $\pi / 4]$

$$
\begin{aligned}
& \int_{0}^{\pi / 4}\left(\sec ^{2} x-\sin x\right) d x \\
& =\tan x+\left.\cos x\right|_{0} ^{\pi / 4}
\end{aligned}
$$

$$
=\left(1+\frac{\sqrt{2}}{2}\right)-(0+1)=\frac{\sqrt{2}}{2}
$$

Ex 3) Find the area between the curves and the x-axis.

Ex 4) Find the area enclosed by these graphs.

$$
\begin{aligned}
& x=\int_{-1}^{y}=\int_{-2}^{3}\left(2 x-x^{2}-3\right) d x \\
& 2 x-x^{2}=-3 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x=3 x=-1 \\
& =\int_{-1}^{3}\left(2 x-x^{2}+3\right) d x \\
& =x^{2}-\frac{x^{3}}{3}+\left.3 x\right|_{-1} ^{3}= \\
& \begin{array}{c}
=(9-9+9)-\left(1+\frac{1}{3}-3\right) \\
=9-\left(\frac{-5}{3}\right)
\end{array} \\
& =\frac{32}{3}
\end{aligned}
$$

Ex 5) Find the area enclosed by these graphs.

