Let $f$ and $g$ be the functions given by $f(x)=1+\sin (2 x)$ and $g(x)=e^{x / 2}$. Let $R$ be the shaded region in the first quadrant enclosed by the graphs of $f$ and $g$ as shown in the figure above.
(a) Find the area of $R$.
(b) Find the volume of the solid generated when $R$ is revolved about the $x$-axis.
(c) The region $R$ is the base of a solid. For this solid, the cross sections perpendicular to the $x$-axis are semicircles with diameters extending from $y=f(x)$ to $y=g(x)$. Find the volume of this solid.
A) $A=\int\left(1+\sin (2 x)-e^{x / 2}\right) d x$
B) $=$
$V=\pi \int_{0}^{(1+\sin (2 x))^{2}-\left(e^{x / 2}\right)^{2} d x} d x$

$$
=4.2674^{3}
$$

C)

$$
\begin{aligned}
& A=\frac{1}{2} \pi r^{2} \\
& A=\frac{1}{2} \pi(\quad)^{2}
\end{aligned}
$$

$$
\left.J=\frac{1}{2} \pi \int_{0}^{1 \cdot 36}\left(\frac{\left.1+\sin (2 x)-e^{x / 2}\right)}{2}\right)^{2} \quad \therefore \bar{r}=\overline{1+\sin (2 x)-e^{x / 2 i}} \right\rvert\,
$$

$$
=.0777 \mathrm{n}
$$

Let $R$ be the shaded region bounded by the graph of $y=\ln x$ and the line $y=x-2$, as shown above.
(a) Find the area of $R$.
(b) Find the volume of the solid generated when $R$ is rotated about the horizontal line $y=-3$.
(c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when $R$ is rotated about the $y$-axis.

$$
\text { a) } \begin{aligned}
A= & \int_{.159}(\ln x-(x-2)) d x \\
& =1.949 u^{2}
\end{aligned}
$$

b)

$$
V=\pi \int_{.159}^{3.146}(\ln x+3)^{2}-(x-2+3)^{2} d x
$$

$$
=34.2 u^{3}
$$



The region bounded by the curve $\sqrt{y=\sqrt{x}}$ the $x$-axis and the line $x=4$ is revolved about the $x$-axis. Find the volume of the solid.

$$
A=\pi r^{2}
$$

Use discs


$$
\begin{aligned}
V & =\pi \int_{0}^{4}(\sqrt{x})^{2} d x \\
& =\left.\pi \cdot \frac{x^{2}}{2}\right|_{0} ^{4}=\frac{\pi \cdot 16}{2}-0=8 \pi
\end{aligned}
$$

The region bounded by the curve $y=\sqrt{x}$ the $x$-axis and the line $\widehat{x=4}$ is revolved about the $x$-axis. Find the volume of the solid.
Use the cylindrical shell method

Shell = parallel

$$
\begin{aligned}
V & =\int_{0}^{2 \pi r \cdot h \quad \text { to the }} \text { revolving } \\
& 2 \pi y\left(4-y^{2}\right) d y \text { axis } \\
& =8 \pi
\end{aligned}
$$

The region bounded by the curve $y=4-x^{2}$, $y=x$, and $x=0$ is revolved around the $y$-axis to form a solid. Find the volume of the solid.

$4-x^{2}=x$
$x=1.56$

The region bounded by the curve $y=4-x^{2}$, $y=x$ and $x=0$ is revolved around the $y$-axis to form a solid. Find the volume of the solid.


$$
\begin{aligned}
& \quad \# 55-61 \\
& \begin{array}{c}
\text { revolving } \\
\text { around } \\
y
\end{array} S=\int_{a}^{b} 2 \pi(g(y)) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y \\
& \begin{array}{c}
\text { revolving } \\
\text { arcing } \\
x
\end{array} S=\int_{a}^{b} 2 \pi g(x) \sqrt{1+\left(g^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

