Chapter 7 Review Honors Calculus

- For $0 \le t \le 6$, a particle is moving along the x-axis. The particle's position, x(t), is not explicitly given. The velocity of the particle is given by $v(t) = 2\sin(e^{t/4}) + 1$. The acceleration of the particle is given by $a(t) = \frac{1}{2}e^{t/4}\cos(e^{t/4})$ and x(0) = 2.
 - (a) Is the speed of the particle increasing or decreasing at time t = 5.5? Give a reason for your answer.

$$\int_{0}^{t} (2\sin(e^{t/4})t) dt = (1.69628 \text{ or } (-6.5644) = 1.949)$$
c) Find the total distance traveled by the particle from time $t = 0$ to $t = 6$.

- S' (2 sin e +1) | dE = (12.573083)
- (d) For $0 \le t \le 6$, the particle changes direction exactly once. Find the position of the particle at that time.

$$V(t)=0$$

 $t=5.195$
 $X(0)=2$
 $V(t)$ switches $Rm(t)+0(-)$
 $S_{0}(2\sin e^{t/4})dt = (2.134)$
 $V(t)=0$
 $V(t)=0$
 $V(t)$ switches $V(t)$ $V(t)=0$
 $V(t)=0$
 $V(t)=0$
 $V(t)$ switches $V(t)=0$
 V

2. The maximum velocity attained on the interval $0 \le t \le 5$ by the particle whose displacement is given by

$$s(t) = 2t^3 - 12t^2 + 16t + 2$$
 is

3. The curve $y = x^2 - 2$ and the line y = 2.

$$\chi^{2} - 2 = 2$$
 $\chi^{2} = 4$

$$x^{2}-2=2$$
 $x^{2}-4$
 $x^{2}=4$
 $x^{2}=4$
 $x^{2}=2$
 $x^$

$$4x-x^2-x^2$$
 $8x^2-4x=0$
 $8x(x-2)=0$
 $8x=6$
 $8x=2$

4. The curve
$$y = x^2$$
 and the curve $y = 4x - x^2$.

$$\begin{cases}
4x - x^2 = x^2 \\
4x - x^2 = x^2
\end{cases}$$

$$\begin{cases}
4x - x^2 - x^2 \\
3x - 4x = 0
\end{cases}$$

$$\begin{cases}
4x - x^2 - x^2 - x^2
\end{cases}$$

$$\begin{cases}
4x - x^2 - x^2
\end{cases}$$

$$\chi^2 - 4\chi - 5 = 24 - 5$$

$$\chi^{2}-6 \times = 0$$

 $\chi(x-y)=0$
 $\chi=0$, $\chi=6$

6. The curve $y = x^3$ and the x-axis, from x = -1 to x = 2.

$$\int_{1}^{2} |x^{3}| dx = 4.25$$

7. The curve $x = y^2$ and the line x = y + 2.

$$\begin{cases}
 \frac{2}{3} \\
 \frac{2}{3} \\$$

Calculate the volumes below.

Find the volume of the solid that results when the region bounded by $y = \sec x$ and the x-axis from $x = -\frac{\pi}{4}$ to $x = \frac{\pi}{4}$ is revolved around the *x*-axis.

Find the volume of the solid that results when the region bounded by $x = 1 - y^2$ and the y-axis is revolved around the y-axis.

If $y = 1 - y^2$ and the y-axis $y = 1 - y^2$ and the y-axi 12.