2.3 Continuity - (Continuous)

Can you trace the graph without lifting your pencil?

Interior Points

A function $f(x)$ is continuous at an interior point if $\lim _{x \rightarrow c} f(x)=f(c)$

Endpoints

A function $f(x)$ is continuous at the left endpoint if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$

A function $f(x)$ is continuous at the right endpoint if $\lim _{x \rightarrow a_{-}} f(x)=f(a)$

4 types of discontinuity

1. Removable (Hole in the graph)

- Can be removed by filling in the missing point

$$
\text { Ex 1) } f(x)=\frac{x^{2}-1}{x-1}
$$

2. Infinite (Vertical Asymptote)

$$
\text { Ex 2) } f(x)=\frac{x^{2}+2 x+1}{x-1}
$$

3. Jump (Piecewise Functions)

$$
\text { Ex 3) } f(x)=\left\{\begin{array}{rr}
x+1, & x>0 \\
x^{2}, & x \leq 0
\end{array}\right.
$$

4. Oscillating

Ex 4) $f(x)=\sin (1 / x)$

Intermediate Value Theorem

If a function is continuous on the interval [a,b], then $f(x)$ must take on all y-values between $f(a)$ and $f(b)$

Ex 5) The function f is continuous on the closed interval $[1,3]$ and has the value given in the table. The equation $f(x)=(5 / 4)$ must have at least two solutions in the interval [1, 3] if $\mathrm{k}=$

x	1	2	3
$f(x)$	2	k	4

A) $1 / 4$
B) $3 / 2$
C) 2
D) $9 / 4$
E) 3

Ex 6) Let f be a continuous function on the closed interval $[-2,5]$. If $\mathrm{f}(-2)=3$ and $f(5)=-7$, then the Intermediate Value Theorem guarantees that
A) $-7 \leq f(x) \leq 3$ for all x between -2 and 5 .
B) $f(c)=-3$ for at least one c between -2 and 5 .
C) $f(c)=0$ for at least one c between -7 and 3 .
D) $f(x)$ is continually decreasing between -2 and 5 .

