4.1 Extreme Values of Functions Day 2

Extreme Value Theorem

If f is continuous on a closed interval [abb], then f has both a maximum and minimum value.
Ex 1)
$y=x^{2} \quad 0 \leq x \leq 2 \quad y=x^{2} \quad 0 \leq x<2$

A local maximum value occurs if and only if $f(x) \leq f(c)$ for all x in an interval.

A local minimum value occurs if and only if $f(x) \geq f(c)$ for all x in an interval.

Ex 2) Find the extreme values of the function.

$$
f(x)=\begin{aligned}
5-2 x^{2}, & x \leq 1 \\
x+2, & x>1
\end{aligned}
$$

True or False

If $f(c)$ is a local max of a continuous function f on an open interval (a, b), then $f^{\prime}(c)=0$

If m is a local minimum and M is a local maximum of a continuous function f on (a, b), then $\mathrm{m}<\mathrm{M}$.

$$
\text { Ex 3) } f(x)=4 x-x^{2}+6 \quad[0,4]
$$

Find the absolute maximum value.

Ex 4) If f is a continuous, decreasing function on $[0,10]$ with a critical point at $(4,2)$, which of the following statements must be false?
a. $f(10)$ is an absolute minimum of f on $[0,10]$
b. $f(4)$ is neither a relative max nor \min
c. $f^{\prime}(4)$ does not exist
d. $f^{\prime}(4)=0$
e. $f^{\prime}(4)<0$

Ex 5) Which of the following functions has exactly two local extrema on its domain?
a. $y=|x-2|$
b. $y=x^{3}-6 x+5$
c. $y=x^{3}+6 x-5$
d. $y=\tan x$
e. $y=x+\ln x$

Ex 6) If an even function f with domain all real numbers has a local maximum at $x=a$, then $f(-a)$...
a. is a local minimum
b. is a local maximum
c. is both a local minimum and a local max d. could be either a local min or local max
e. is neither a local min nor a local max

