4.2 Mean Value Theorem

MVT - Mean Value Theorem
If $f(x)$ is continuous on $[a, b]$ and it is differentiable on (a, b), then there is some point c at which,

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Ex 1) Find a point c that satisfies the Mean Value Theorem given the following:

$$
y=x^{2} \quad 0 \leq x \leq 4
$$

Ex 2) Find a point c that satisfies the Mean Value Theorem given the following:

$$
y=\sqrt{x} \quad 0 \leq x \leq 4
$$

Ex 3) Find a point c that satisfies the Mean Value Theorem.

$$
y=\ln x \quad 1 \leq x \leq e
$$

Ex 4) Find a point c that satisfies the Mean Value Theorem.

$$
y=|x| \quad-2 \leq x \leq 2
$$

Ex 5) Find a point c that satisfies the Mean Value Theorem.

$$
y=x^{3 / 2} \quad 1 \leq x \leq 4
$$

Ex 6) Increasing?
 Decreasing?
 Constant?

Assuming $f(x)$ is continuous and differentiable on [a,b]...

If $f^{\prime}(x)>0$ for all x on (a, b), then $f(x)$ is increasing on $[a, b]$

If $f^{\prime}(x)<0$ for all x on (a, b), then $f(x)$ is decreasing on $[a, b]$
***A function can be both increasing and decreasing at the same point!

Ex 7) Determine the intervals on which the function is increasing or decreasing.

$$
f(x)=(x-3)^{3}
$$

Ex 8) Determine the intervals on which the function is increasing or decreasing.

$$
f(x)=x^{4}-2 x^{2}
$$

Ex 9) Determine the intervals on which the function is increasing or decreasing.

$$
f^{\prime}(x)=\frac{5 x-10}{3 \sqrt{x}}
$$

