4-6 Related Rates

- Compare two or more variables with respect to time.

$$
\begin{array}{cc}
\frac{d r}{d t}=\frac{\Delta r}{\Delta t} & \text { How fast is the radius } \\
\text { changing? } \\
\frac{d V}{d t}=\frac{\Delta V}{\Delta t} & \text { How fast is the volume } \\
\frac{d h}{d t}=\frac{\Delta h}{\Delta t} & \text { How fast is the height } \\
\text { changing? }
\end{array}
$$

$$
\text { Ex 1) } y=x^{2}+3 x
$$

Find dy/dt when $x=3$ and $d x / d t=2$.

Ex 2) $x^{2}+y^{2}=25$
Find $d y / d t$ when $x=3, y=4$ and $d x / d t=8$.

Ex 3) Air is being released from a spherical balloon at $3 \mathrm{in}^{3} / \mathrm{min}$. What is the rate of a change for the radius, when $r=2$ in?

1. Label all variables.
P. 246-247
2. Write an equation relating the variables.
3. Differentiate explicitly with respect to t .
4. Substitute into the derivative equation.
5. Solve

Ex 4) An airplane is flying at an altitude of 2 mi . If the distance, s, from the plane to a person on the ground is decreasing at 300 mph , what is the speed of the plane when s is 3 miles?

Ex 5) A TV camera 2000 ft from the launch pad films the lift off for a shuttle. The shuttle is rising such that $h=50 \mathrm{t}^{2}$. Find the rate of change for the camera's angle of elevation at $\mathrm{t}=10 \mathrm{sec}$.

Ex 6) A water tank in the shape of a cone with radius $=6 \mathrm{ft}$ and height $=18 \mathrm{ft}$, is leaking water at $2 \mathrm{ft} 3 / \mathrm{hr}$. How fast is the height changing when the radius $=4 \mathrm{ft}$?

