6.1 Slope Fields and Euler's Method

Find the general solution to the exact differential equation.

Ex 1)
$$\frac{dy}{dx} = 2x$$

Ex 2)
$$\frac{dy}{dx} = \sec(x)\tan(x) - e^x$$

Ex 3) $\frac{dy}{dx} = \frac{1}{x} - \frac{1}{x^2}$

Ex 3)
$$\frac{dy}{dx} = \frac{1}{x} - \frac{1}{x^2}$$

Find the general solution to the exact differential equation.

Ex 4)
$$\frac{dy}{dx} = 2x(\cos x^2)$$

Ex 5)
$$\frac{dy}{dx} = \sec^2 x + 2x + 5$$

Ex 6)
$$\frac{dy}{dx} = e^{x} - 6x^{2}$$

Solve the initial value problem.

Ex 7)
$$\frac{dy}{dx} = 2\cos(x)$$
 y =
y = 3, x = 0

Ex 8)
$$\frac{dy}{dx} = 2e^{x} - \cos x \qquad y =$$

$$y = 3, x = 0$$

Solve the initial value problem.

Ex 9)
$$\frac{dy}{dx} = 10x^9 + 5x^4 - 2x + 4 \qquad y = f(1) = 6$$

Ex 10)
$$\frac{dy}{dx} = \frac{1}{x^2} - \frac{2}{x^3}$$
 y = f(1) = 4