Volume of a Solid

The volume of a solid can be found by finding the sum of the area of the cross sections.

$$
V=\int_{a}^{b} A(x) d x
$$

How to Find Volume by Slicing

1. Sketch the solid and a typical cross section.
2. Find a formula for the area of the cross section.
3. Find the bounds of integration.
4. Integrate $A(x)$ to find volume.

The circle formed by $x^{2}+y^{2}=1$ represents the base of a solid. Squares are stacked perpendicular to the x-axis to form a 3-D object. Find the volume of that solid.

A solid is made so that its base is the shape of the region between the x-axis and one arch on the curve $y=2 \sin x$. Each cross section cut perpendicular to the x-axis is a semi-circle whose diameter runs from the x-axis to the curve. Find the volume of the solid

Solids of Revolution

-Formed when a curve or region is revolved around a line.
-The cross section of a solid of revolution is circular.
-These cross sections are either in the shape of a disc or a washer (donut!!!).

Discs

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the x-axis.

$$
y=2 x \quad x=4
$$

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the x-axis.

$$
y=x^{2} \quad y=0 \quad x=3
$$

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the x-axis.

$$
y=x-x^{2} \quad y=0
$$

Washer (Donut Method)

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the x-axis.

$$
y=2 x \quad y=8 \quad x=0
$$

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the x-axis.

$$
y=4-x^{2} \quad y=2-x
$$

