Volume of a Solid

The volume of a solid can be found by finding the sum of the area of the cross sections.

$$
V=\int_{a}^{b} A(x) d x
$$

How to Find Volume by Slicing

1. Sketch the solid and a typical cross section.
2. Find a formula for the area of the cross section.
3. Find the bounds of integration.
4. Integrate $A(x)$ to find volume.

Solids of Revolution

-Formed when a curve or region is revolved around a line.
-The cross section of a solid of revolution is circular.
-These cross sections are either in the shape of a disc or a washer (donut!!!).

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the line $y=5$.

$$
y=2 x \quad x=2 \quad y=0
$$

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the line y-axis.

$$
y=2 x \quad x=2 \quad y=0
$$

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the line $y=-2$.
$y=x^{2} \quad y=0 \quad x=3$

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the line $x=4$.

$$
y=x^{2} \quad y=0 \quad x=3
$$

Find the volume of the solid generated by revolving the region bounded by the lines and curves about the line $y=-1$.

$$
y=4-x^{2} \quad y=2-x
$$

