
Let f and g be the functions given by $f(x) = 1 + \sin(2x)$ and $g(x) = e^{x/2}$. Let R be the shaded region in the first quadrant enclosed by the graphs of f and g as shown in the figure above.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is revolved about the x-axis.
- (c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles with diameters extending from y = f(x) to y = g(x). Find the volume of this solid.

Let R be the shaded region bounded by the graph of $y = \ln x$ and the line y = x - 2, as shown above.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is rotated about the horizontal line y = -3.
- (c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis.

The region bounded by the curve $y = \sqrt{x}$ the x-axis and the line x = 4 is revolved about the x-axis. Find the volume of the solid.

Use discs

The region bounded by the curve $y = \sqrt{x}$ the x-axis and the line x = 4 is revolved about the x-axis. Find the volume of the solid.

Use the cylindrical shell method

The region bounded by the curve $y = 4 - x^2$, y = x, and x = 0 is revolved around the y-axis to form a solid. Find the volume of the solid.

Use discs

The region bounded by the curve $y = 4 - x^2$, y = x, and x = 0 is revolved around the y-axis to form a solid. Find the volume of the solid.

Use the cylindrical shell method