Degree:

* How we measure an angle.
* Label answers with ${ }^{\circ}$ symbol.

Ray:

* Part of a line that only goes in one direction forever.
* Named w/ 2 letters, the first must be the endpoint, the second letter is any point on the ray.

Opposite Rays:

* Two rays that go in opposite directions, but have the same endpoint.
* Opposite rays will form a line.

Angle:

* The intersection of two nonlinear rays at a common endpoint.
* Name with one letter (the vertex letter) or with 3 letters (the vertex letter is in the middle).
* Could also be named with a number if one is there.
*Symbol: L

Angle Parts:

Rays- The sides that make up the angle.
Vertex- The common endpoint.
Interior- The inside of the angle.
Exterior- The outside of the angle.

Protractor-

* The device use to measure an angle.

Right Angle-

*An angle that measures exactly 90°.

* Can be indicated with a little box in the corner.

Acute Angle-

*An angle that measures between 0° and 90°.

* Has a small opening.

Obtuse Angle-

* An angle that measures between 90° and 180°.
* Has a wide opening.

Congruent Angles:

* Two angles that have the same measure.

Angle Bisector:)

* The line or ray that divides an angle into two congruent angles.

1. Use the diagram below to name the following.
a. Name all angles that have B as a vertex. $\sum_{\angle 6} A B C$ <5
b. Name the sides of $\angle 5$. $\overrightarrow{B E}$ of $\overrightarrow{B D}$
c. Write another name for $\angle 6$. $\angle C B E$

2. Use the star labeled and shown below to

 solve. Find $\mathrm{m} \angle \mathrm{GBH}$ and $\mathrm{m} \angle \mathrm{HCl}$ if $\angle \mathrm{GBH} \cong \angle \mathrm{HCl}, \mathrm{m} \angle \mathrm{GBH}=2 \mathrm{x}+5$, and $\mathrm{m} \angle \mathrm{HCl}=3 \mathrm{x}-10$.$2 x+5=3 x-10$
$-2 x$

3. Measure each angle named and classify it as right, acute, or obtuse.

a. $\mathrm{m} \angle \mathrm{BED}=152^{\circ}$, obtuse ${ }^{\mathrm{F}}$
b. $m \angle F E D=30^{\circ}$, acute
c. $m \angle B E A=90^{\circ}$, right

