Polygon:

* A closed figure made up of line segments.
* Sides of a polygon are the segments.
* Vertices are the spots where 2 sides come together.
* Each side intersects exactly 2 other sides, but only at their endpoints.
* Name the polygon by the letters of the vertices going in consecutive order.

$\triangle \mathrm{ABC}$

ZWXY xwzy

NMLPO

Concave:

* When there are dents.
* If you can connect 2 points on the figure and the segment leaves the figure.

Convex:

* When there are no dents.
* If you can connect 2 points on the figure and the segment stays in the figure.

Classify the polygons by the number of sides.

Number of sides

3	
5	
6	
7	
8	
9	
10	
12	

n

Polygon Name triangle quadrilateral
pentagon hexagon heptagon octagon nonagaon decagon dodecagon
n - gon

Regular Polygon:

* A convex polygon with all sides congruent and all interior angles are congruent.

Perimeter:

* The distance around a figure.
* Sum of all the sides.

1. Name each polygon by the number of

 sides. Then classify it as convex or concave, regular or irregular.
b.

2. A masonry company is contracted to lay three layers of decorative brick along the foundation for a new house given the dimensions below.

a. Find the perimeter of the foundation to determine how many bricks the company will need to complete the job. Assume that one brick is 8 inches long.

$$
\begin{aligned}
216 * 12= & 2592 \mathrm{in} . \\
2592 \div 8= & 324 \text { bricks } \\
& \frac{* 3}{972} \text { bricks }
\end{aligned}
$$

3. Find the perimeter of pentagon ABCDE with $A(0,4), B(4,0), C(3,-4), D(-3,-4)$ and $E(-3,1)$

4. The width of a rectangle is 5 less than twice its length. The perimeter is 80 cm . Find the length of each side.

