Central Angle:

* An angle that has the center of the circle as the vertex.
* The sides of the angle will be the two radii of the circle.

Sum of Central Angle:

* The sum of the measures of the central angles of a circle when there is not interior points in common is 360°.

$m \angle 1+m \angle 2+m \angle 3=360^{\circ}$

1. $\overline{\mathrm{RV}}$ is a diameter of $\odot \mathrm{T}$.
a. Find $m \angle R T S$.
$\underline{8} x-\underline{4}+13 x-\underline{3}+\underline{5} x+\underline{5}=180$

b. Find $\mathrm{m} \angle \mathrm{QTR}$.

$$
\begin{gathered}
52+91-3+35+5+140+m \angle Q T R=360 \\
320+m \angle Q T R=36 Q T R=360 \\
-320 \quad=320 \\
\hline m \angle Q T R=40^{\circ}
\end{gathered}
$$

Arc:

* The central angle separates the circle into 2 parts. These parts are arcs.
* The measure of the arc is related to the measure of the central angle.
* Think of an arc as the crust of a pizza or pie.
*Symbol: m $\overparen{A B}$

Minor Arc:

* An arc with a measure less than 180°.
* Usually name it with the the two endpoints of the arc.
* Will be the same measure as the central angle.

Major Arc:

* An arc with a measure more than 180°.
* Usually name it with the two endpoints and a point on the arc. (3 letters are needed, endpoints are 1st and 3rd letters.)
* Measure will $=360^{\circ}$ - central angle.

$$
\begin{aligned}
& \mathrm{mAFB}=360^{\circ}-\mathrm{mAB} \\
& \mathrm{mAFB}=360^{\circ}-108^{\circ} \\
& m \overparen{A F B}=252^{\circ}
\end{aligned}
$$

Semicircle:

* An arc with a measure exactly 180°
* Usually name it with the two endpoints and a point on the arc. (3 letters are needed, endpoints are 1st and 3rd letters.)

$m \overparen{\mathrm{JKL}}=180^{\circ}$
$m \overparen{\mathrm{JML}}=180^{\circ}$

Congruent Arcs:

* 2 arcs are \cong in the same circle (or congruent circles) iff their corresponding central angles are congruent.

$$
\begin{aligned}
& \mathrm{m} \overparen{\mathrm{AB}}=53^{\circ} \\
& \mathrm{mDC}=53
\end{aligned}
$$

Arc Addition Postulate:

* The measure of an arc formed by 2 adjacent arcs is the sum of the measures of the 2 arcs.

$$
\begin{aligned}
& \text { In } \odot \mathrm{S}, \\
& \mathrm{mPQ}+\mathrm{m} \overparen{Q R}=\mathrm{mPR}
\end{aligned}
$$

2. In $\odot P, \mathrm{~m} \angle \mathrm{NPM}=46^{\circ}, \overline{\mathrm{PL}}$ bisects $\angle \mathrm{KPM}$, and $\overline{\mathrm{OP}} \perp \overline{\mathrm{KN}}$. Find each measure.
a. $m \overparen{m O K}=90^{\circ}$
b. mLM

$46+67+67 \times 46+90=316^{\circ}$
$m \pi_{0}=316^{\circ}$

Circle Graphs:

* To make a circle graph: take the category percent and multiply it by 360° to find the measure of the central angle you need to draw.
* Make sure all angles add up to 360°.

Suppose two of the categories in a circle graph are sleep 25% and eating 10%. You would find the central angle by:
sleep: $(0.25)\left(360^{\circ}\right)=90^{\circ}$
eating: $(0.10)\left(360^{\circ}\right)=36^{\circ}$

Arc Length:

* Arc length is part of the circumference since an arc is part of a circle.
* Think of it as how much pizza (or pie) crust you will eat.

or

$$
\ell=\text { arc length }
$$

$r=$ radius
3. In $\odot B, A C=9$ and $m \angle A B D=40^{\circ}$. Find the length of $\overparen{A D}$.

$$
\begin{aligned}
& \frac{A}{360}=\frac{l}{2 \pi r} \quad \begin{array}{l}
d=9 \\
\frac{40}{2} \cdot 9 \\
360
\end{array} \frac{l}{2 \pi(4.5)} \\
& 360 e=4.5 \\
& \frac{360.2 \pi .4 .5}{360}=\frac{1130.973355}{360} \\
& e=3.14159265 \% \\
& e=\pi
\end{aligned}
$$

