The equation of the circle was derived from the distance formula.
$r=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$r^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$

Standard Equation of a Circle:

* An equation for a circle with center (h, k) and a radius of r units is:

$$
r^{2}=(x-h)^{2}+(y-k)^{2}
$$

Given the center and a point on the circle, you can find the equation of the circle.

Given the equation of a circle you can state the center and radius.

When the center of the circle is the origin $(0,0)$ then the equation will be:

$$
r^{2}=x^{2}+y^{2}
$$

1. Write an equation for each circle.

$$
\begin{aligned}
& r^{2}=(x-h)^{2}+(y-k)^{2} \quad r=12 \div 2=6 \\
& 6^{2}=(x-3)^{2}+(y+3)^{2} \\
& (x-3)^{2}+(y+3)^{2}=36
\end{aligned}
$$

b. Center at $(-12,-1), r=8$

$$
\begin{aligned}
& (x-h)^{2}+(y-1-)^{2}=r^{2} \\
& (x+12)^{2}+(y+1)^{2}=8^{2}
\end{aligned}
$$

3. Write an equation for a circle with a diameter that has endpoints $(-7,-2)$ and $(15,6)$.
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$(15,6)(4,2)$
$\left(\frac{-7+15}{2}, \frac{-2+6}{2}\right)$
$\left(\frac{8}{2}, \frac{4}{2}\right)$

$$
\begin{aligned}
& r=\sqrt{(15-4)^{2}+(6-2)^{2}} \\
& r=\sqrt{1, y^{2}+y^{2}} \\
& r=\sqrt{12 x+1}
\end{aligned}
$$

$1 K$

4. Find the radius of a circle with equation $(x-2)^{2}+(y-2)^{2}=r^{2}$ that contains the point at $(2,5)$.

