Probability: $\frac{\text { What you want }}{\text { What is possible }}$
$P(E)$: Probability (chances) of an event happening.
E represents what you want to happen.
Example: $P(Q)$:chances of picking a queen in a deck of cards.

Geometric Probability:

* Used when you want to find the chances of landing in a specific area.

$$
P(E)=\frac{\text { Area you want }}{\text { Total Area }}
$$

* Assume that it is equally likely that the object will land anywhere in the region.
* Assume that the object lands within the target area.

Sector:

* A region of the circle that is bounded by central angle and its intercepted arc.
* Think of it as a slice of pizza or pie.

Area of Sector:
$A=\frac{N}{360^{\circ}} \pi r^{2}$
r: radius
N : central angle measure

Segment of a Circle:

* The region of a circle bounded by an arc and a chord.

Area of a Segment = area sector - area triangle

1. A game board consists of a circle inscribed in a square. What is the chance that a dart thrown at the board will land in the shaded region?

2.

a. Find the area of the shaded sectors.

$$
\begin{aligned}
& A=\frac{N}{360} \cdot \pi r^{2} \\
& A=\frac{80}{300}=1 \cdot 9^{2}
\end{aligned}
$$

that a point chosen at
random lies in the shaded region.

$$
\begin{aligned}
P(\text { shaded region })= & \frac{18 \pi}{\pi r^{2}}=\frac{18 \pi}{9^{2} \pi}: \frac{18 \pi}{81 \pi} \\
& =20.2 \\
& =220 / 0
\end{aligned}
$$

3. A regular hexagon is inscribed in a circle with a diameter of 12.
a. Find the area of the shaded regions.

$6 \pi-18 \sin 60^{\circ}$
$=3.26$

b. Find the probability that a point chosen at $P\left(\right.$ shaded region) ${ }^{\text {ane }}$ Sir ion
random lies in the
shaded shaded region. $9.78 /(36 \pi)$
