Cylinder:

* A 3-dimensional figure with the 2 bases as circles.

Axis:

* The segment with endpoints that are the center of the bases.

Right Cylinder:

* A cylinder that has the axis as the altitude. (Forms a right angle.)

Oblique Cylinder:

* When there is a slant to the cylinder, the axis is not perpendicular to the bases.

Right
Cylinder

Oblique
Cylinder

Lateral Area:

* Think of it as the label on the soup can.
* Indicated by L.A. or L.
$\mathrm{LA}=\mathrm{ph}$
$\mathrm{p}=$ perimeter of base
$\mathrm{h}=$ height of cylinder

OR

$$
\text { LA = } 2 \pi r h
$$

Surface Area:

* The area of the whole figure (lateral area and the bases).
* Indicated by S.A. or T (Total Area).

$$
\begin{array}{ll}
T=L A+2 B & B=\text { Area of Base } \\
& L A=\text { Lateral Area }
\end{array}
$$

OR
$S A=2 \pi r h+2 \pi r^{2}$

1. A fruit juice can is cylindrical with aluminum sides and bases. The can is 12 cm tall, and the diameter of the can is 6.3 cm . How many square centimeters of aluminum are used to make the sides of the can?

2. Find the exact/surface area of the cylinder.

3. Find the radius of the base of a right cylinder if the surface area is 528π square feet and the height is 10 feet.
$5 . A=2 \pi r h+2 \pi r^{2}$
$528 \pi=2 \pi r(10)+2 \pi r^{2}$
528
$528 \pi=\frac{20 \pi r+2 \pi r^{2}}{2 \pi}=\frac{3 \pi\left(10 r+r^{2}\right)}{2 \pi}$
$\frac{28 \pi}{2 \pi}$
$\begin{array}{r}264 \\ -264\end{array} r^{2}+10 r$
$\frac{-264-264}{0=r^{2}+10 r-264}$
$0=(r-12)(r+22)$
$r-12=0 \quad r+22=0$
$r=12 r t r+22$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
a x^{2}+b x+c=0
$$

