Sphere:

*A 3-dimensional figure.

* Appearance of a an orange or tennis ball.
* In space the set of all points that are the same distance from a given point.

Special Segments of a Sphere:

* Radius: the endpoints are at the center and a point on the sphere.
* Chord: The endpoints are on the sphere.
* Diameter: a chord that goes through the center of the sphere.
* Tangent of a sphere: a line that intersects the sphere in exactly one point.

Great Circle:

* When the cross section goes through the center of the sphere.
* It is like cutting an orange in half, the shape you see is a circle.
* Will have the same center as the sphere, as well as the same radii.

Hemisphere:

* The great circle separates the sphere into two congruent pieces.
* A half of sphere. (Each half of an orange.)

Surface Area:

* How much we need to cover.
* S.A. will indicate that we are looking for the surface area.

$$
\text { S.A. }=4 \pi r^{2}
$$

$$
r=\text { radius }
$$

Hemisphere

$$
S_{S_{0}}=2 \pi r^{2}+\pi r^{2}
$$

1. Find the surface area of the sphere given the great circle with an area of $907.9 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
& S . A=4 \pi r^{2}: \pi=907.9 \\
& S . A=4(907.9) \\
& S . A=3631.6 \mathrm{~cm}^{2}
\end{aligned}
$$

2. Find the surface area of a hemisphere with a radius of 3.8 inches.

$$
\begin{aligned}
& S . A=2 \pi r^{2}+\pi r^{2} \\
& S . A=2 \pi(3.8)^{2}+\pi(3.8)^{2} \\
& S . A=90.72919++45.3645 \\
& S . A=136.1 i_{12}^{2}
\end{aligned}
$$

3. Find the surface area of a ball with a circumference of 24 inches to determine how much leather is needed to make the ball.

$$
\begin{array}{cc}
\text { ball. } & c=24 \\
S_{. A}=4 \pi r^{2} & C=2 \pi r \\
S_{A}=4 \pi(3.8197)^{2} & \frac{24}{2 \pi}=4 \pi r \\
S_{B}=183.3 i_{n}^{2} & 3.8197=r
\end{array}
$$

