Volume of Spheres:

$$
V=\left(\frac{4}{3}\right) \pi r^{3}
$$

r = radius

1. Find the volume of each sphere to the nearest tenth.
a.

b.

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& v=\frac{4}{3} \pi(3.97887)^{3} \\
& v=263.9 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
C & =25 \mathrm{~cm} \\
c & =2 \pi r \\
\frac{25}{2 \pi} & =\frac{2 \pi r}{3 \pi}
\end{aligned}
$$

$3.97887=r$
2. Find the volume of a hemisphere with a diameter of 6 feet.

$$
\begin{aligned}
& V=\left(\frac{1}{3}\right) \pi r^{3} \\
& \left(\frac{4}{3}\right) \pi\left(3^{3}\right) \\
& \frac{1 \beta .097 e^{35}}{2}=56.597^{3}
\end{aligned}
$$

3. Compare the volumes of the sphere and cylinder with the same radius and height as the radius of the sphere.

$$
\begin{aligned}
& V=\pi r^{2} \cdot r \\
& V=\pi r^{3} \\
& \text { Volume of sphere is } 4{ }^{3} \text { tines larger } \\
& \text { than volume of the cylinder. }
\end{aligned}
$$

