Ordered Triple:

* How a point in space is represented.
* (x, y, z)

Distance:

* The distance between points in space can be found by using a special case of the distance formula.

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

2. Determine the distance between $F(4,-2,0)$ and $G(-2,3,-1)$.

$$
\begin{gathered}
\sqrt{(-2+4)^{2}+(3++2)^{2}+(-1-0)^{2}} \\
\sqrt{(-6)^{2}+\left(5^{2}\right)+(-1)^{2}} \\
\sqrt{36+25+1}
\end{gathered}
$$

Midpoint:

* The midpoint in space between two points can be found by using a special midpoint formula.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

3. Determine the midpoint M of segment $F G$ if $F(4,-2,0)$ and $G(-2,3,-1)$

$$
\begin{aligned}
\text { Midpl. of FGG } & \left(\frac{4 x-2}{2}, \frac{-2+3}{2}, \frac{0 x-1}{2}\right) \\
& \left(1, \frac{1}{2}-1\right)
\end{aligned}
$$

Translations (slides):

* Can be performed in space

$$
\text { * }(x, y, z) \cdots-\cdots-\cdots-\cdots+a, y+b, z+c)
$$

4. Translate the following points using the following translations.

$$
B(0,-5,8): \quad(x, y, z) \cdots(x-4, y+3, z-5)
$$

$(0-4,-5+3,8-5)$

$$
(-4,-2,3)
$$

Dilation's (size changes) can also be performed in space.

$$
(x, y, z) \cdots---->k(x, y, z)=(k x, k y, k z)
$$

5. Perform the indicated dilation for the ordered triple.
a. $(3,0,-4)$ with $\mathrm{k}=2$

$$
(2 \cdot 3,2 \cdot 0,2 \cdot-4)
$$

