Postulate:

If 2 lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.

If corr. \angle 's are \cong, then lines are //.

Postulate:

If given a line and a point not on the line, then there exists exactly one line through the point that is parallel to the given line.

Theorem:

If 2 lines in a plane are cut by a transversal so that a pair of alternate exterior angles are congruent, then the two lines are parallel.

If alt. ext. \angle 's are \cong, then lines are //.

Theorem:

If 2 lines in a plane are cut by a transversal so that a pair of alternate interior angles are congruent, then the two lines are parallel.

If alt. int. \angle 's are \cong, then lines are $/ /$.

Theorem:

If 2 lines in a plane are cut by a transversal so that a pair of consecutive interior angles are supplementary, then the two lines are parallel.

If cons. int. \angle 's are supp., then lines are //.

Theorem:
In a plane, if two lines are \perp to the same line, then they are parallel.

If 2 lines are \perp to the same line, then lines //.

1. Determine which lines, if any, are parallel.

2. Find x and $m \angle Z Y N$ so that $\overline{\mathrm{PQ}} / / \overline{\mathrm{MN}}$.

