Isosceles Triangle:

* A triangle with at least two congruent sides.

Vertex Angle:

* The angle formed by the 2 congruent sides.

Base Angles:

* The 2 angles formed by the base and 1 of the congruent sides.

Legs:

* The two congruent sides.

Isosceles Triangle Theorem:

* If 2 sides of a triangle are congruent, then the angles opposite those sides are congruent.
* Base angles are congruent.

If $\overline{\mathrm{AB}} \cong \overline{\mathrm{CB}}$, then $\angle \mathrm{A} \cong \angle \mathrm{C}$

Isosceles Triangle Converse Theorem:

* If 2 angles of a triangle are \cong, then the sides opposite those \angle 's are \cong.

$$
\text { If } \angle \mathrm{D} \cong \angle \mathrm{~F}, \text { then } \overline{\mathrm{DE}} \cong \overline{\mathrm{FE}} .
$$

Properties of Equilateral Triangles:

* The Isosceles Triangle Theorem will apply to the equilateral triangle.
* Base angles are congruent.

Corollary:

* A triangle is equilateral iff it is equiangular.

Corollary:

* Each angle of an equilateral triangle is 60°.

2. a. Name 2 congruent $\angle M L N \cong \subset \angle N L$ angles.
b. Name 2 congruent $P L \cong P M$ segments.

3. Take the figure shown and Draw $\overline{\mathrm{EJ}}$ so that $\overline{\mathrm{EJ}}$ bisects $\angle 2$, and J lies on $\overline{\mathrm{FG}}$.
$\triangle \mathrm{EFG}$ is equilateral,
$\overline{\mathrm{EH}}$ bisects $\angle \mathrm{E}$.
Find the following:
a. $m \measuredangle H E J=15^{\circ}$
b. $m \triangle E J H=90-15=750$

