Perpendicular Bisector:

* A line, segment, or ray that passes through the midpoint of the segment and is perpendicular to the segment.

Points on Perpendicular Bisectors:

**Property 1:
Any point on the perpendicular bisector of a segment is equidistant from the endpoints of the segment.

Property 2:

*Any point equidistant from the endpoints of a segment lies on the perpendicular bisector of the segment.

A triangle has 3 sides, therefore there are 3 perpendicular bisectors in a triangle.

The perpendicular bisectors of a triangle intersect at a common point.

Concurrent Lines:

* When 3 or more lines intersect at a common point.

Point of Concurrency:

* The point where the 3 or more lines intersect.

Circumcenter:

The point of concurrency of the perpendicular bisectors of the triangle.

Circumcenter Theorem:

* The circumcenter of a triangle is equidistant from the vertices of the triangle.
See top of page 239

1.) Lines m, n, and I are perpendicular bisectors of $\triangle A B C$ and meet at T. Find x, y, z.

Angle Bisector:

* A line, segment, or ray that cuts an angle in half.

Points on Angle Bisectors:

* Any point on the angle bisector is equidistant from the sides of the angle.
* Converse is true also.

Incenter:
"Where the 3 angle bisectors meet in a triangle.

* It is the point of concurrency for the angle bisectors.

Incenter Theorem:

* The incenter of a triangle is equidistant from each side of the triangle.
* See page 240

Types of lines	Concurrentat...	special Feature
Perpendicular Bisector	Circumcenter	equidistant from the ventices of the triangle
Angle Bisector	In senter	equidistant from the sides of the triangle

