6-2 Similar Polygons

Similar Polygons:
*When polygons have the same shape, but may be different sizes.
*Symbol: $\boldsymbol{\sim} \sim$
*Two polygons will be similar iff their corresponding angles are congruent and the measures of their corresponding sides are proportional.
*The order that the letters are put will indicate what the corresponding parts are.

Scale Factor
 *Used to compare models with real-life objects.

* A ratio comparing the corresponding sides.
*All the corresponding side ratios should reduce to the same scale factor.

Example 1: Determine whether each pair of figures is similar. JUSTIFY

6-2 Similar Polygons

Example 2: An architect prepared a 12 -inch model of a skyscraper to look like a real 1100 foot building. What is the scale factor of the model to the real building?

$$
\frac{\text { model }}{r_{\text {real }}}=\frac{x_{2}}{\left.1100 \pi_{2}\right)}=\frac{1}{1100}
$$

Example 3: Rectangle WXYZ is similar to rectangle PQRS with a scale factor of 1.5. If the length and width of PQRS are 10 meters and 4 meters, respectively, what are the length and width of the rectangle WXYZ?

$$
\frac{w x y z}{P_{Q R S}}=\frac{1.5}{1}=\frac{e}{10}
$$

6-2 Similar Polygons

Example 4: The two polygons are similar

a. Write a similarity statement. Then find x, y, and UV.
ABCDE~RSTUV
b. Find the scale factor of polygon $A B C D E$ to polygon

6-2 Similar Polygons

Example 5:

The scale on the map of a city is (1/4) inch equals 2 miles. On the map, the width of the city at its widest point is 3.75 inches. The city hosts a bicycle race across town at its widest point. Kelli bikes at 10 miles per hour. How long will it take her to complete the race.

$$
\begin{gathered}
\frac{\text { map }}{\text { city }}=\frac{\frac{1}{4}}{2}-\frac{3.75}{x} \\
\text { (4) } \frac{1}{4} x=7.5(4) \\
x=30
\end{gathered}
$$

