6-4 Parallel Lines and Proportional Parts

Triangle Proportionality Theorem:
*If a line is parallel to one side of a triangle and intersects the other two sides in two distinct points, then it separates these sides into segments of proportional length.

6-4 Parallel Lines and Proportional Parts

Converse of the Triangle Proportionality Theorem:

___ *If a line intersects two sides of a triangle and separates the sides into corresponding segments of proportional lengths, then the line is parallel to the third side.

If $\frac{B A}{B C}=\frac{D E}{D C}$ then $\overline{B D} / / \overline{A E}$

6-4 Parallel Lines and Proportional Parts

Triangle Midsegment Theorem:

___*The midsegment of a triangle is parallel to one side of the triabgle, and its length is one-half the length of the length of that side.

If B and D are midpoints of $\overline{A C}$ and $\overline{E C}$ respectively,
then, $\overline{B D} \| A \bar{E}$, and $B D=\frac{1}{2} A E$

6-4 Parallel Lines and Proportional Parts

Example 1:

$\ln \triangle \mathrm{RST}, \overline{R T} / / \overline{\mathrm{VU}}, \mathrm{SV}=3, \mathrm{VR}=8$, and UT = 12. Find SU

Example 2:

In $\triangle D E F, D H=18, H E=36$, and $D G=0.5(G F)$.
Determine whether $\overline{\mathrm{GH}} / /$ FE. Explain your answer.

6-4 Parallel Lines and Proportional Parts

If 3 or more parallel lines intersect 2 transversal, then they cut off the transversals proportionally.

If $\overline{A D}\|\overline{E B}\| \overline{C F}$, then

$$
\frac{A B}{B C}=\frac{D E}{E F} \quad \frac{A C}{D F}=\frac{B C}{E F}
$$

$$
\text { and } \frac{A C}{B C}=\frac{D F}{E F}
$$

