Proportional Perimeters Theorem:
*If 2 Triangles are similar, then the perimeters are proportional to the measures of the corresponding sides.

Example 1:
If $\triangle A B C \sim \Delta X Y Z, A C=32, A B=16, B C=16 \sqrt{5}$, and $X Y=24$, find the perimeter of $\triangle X Y Z$.

$\underset{\text { Perindin }}{\frac{x}{83.777}} \underset{16}{ } \times \frac{24}{16}$

$$
\begin{gathered}
\frac{16 x}{16}=\frac{24(83.7+7)}{16} \\
x=125.6655
\end{gathered}
$$

$P=16+32 \times 16 \sqrt{\gamma}$
$P=48+16 \sqrt{\gamma}$
$P=83.777$

Special Segments of Similar Triangles:

If 2 triangles are similar, then the measures of the corresponding altitudes are proportional to the measures of the corresponding sides.

$$
\operatorname{sid}_{s}
$$

Special Segments of Similar Triangles:

If 2 triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides.

Special Segments of Similar Triangles:

If 2 triangles are similar, then the measures of the corresponding angle bisectors of the triangle are proportional to the measures of the corresponding sides.
sides

Angle Bisector Theorem:

_*An angle bisector in a triangle separates the opposite side into segments that have the same ratio as the other two sides.

$$
\frac{A D}{D B}=\frac{A C}{B C} \quad \frac{\text { Segments w/ Vertex } A}{\text { Segments w/ Vertex B }}
$$

Example 2:

$\Delta A B C \sim \triangle M N O$ and $B C=\frac{1}{3} N O$. Find the ratio of the altitude of $\Delta \mathrm{ABC}$ to the altitude of $\Delta \mathrm{MNO}$

$\frac{B C}{N_{0}}=\frac{\frac{1}{3} x}{\frac{1}{x}}=$

$$
\frac{1}{3}
$$

is the
of the alyiyurs.

Example 3:

In the figure, $\triangle E F G \sim \Delta J K L$. $\overline{E D}$ is an altitude of $\Delta E F G$, and J is an altitude of $\Delta \mathrm{JKL}$. Find x if $E F=36, E D=18$, and $J K=56$

Example 4:

The drawing below illustrates two poles supported by wires.
$\Delta \mathrm{ABC} \sim \Delta \mathrm{GED} . \overline{\mathrm{AF}} \cong \overline{\mathrm{CF}}$ and $\overline{\mathrm{FG}} \cong \overline{\mathrm{GC}} \cong \overline{\mathrm{DC}}$.
Find the height of pole $\overline{\mathrm{EC}}$.

