Pythagorean Theorem:

* Given a right triangle, then

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
* \operatorname{leg}^{2}+\operatorname{leg}^{2}=\text { hyp }^{2}
\end{gathered}
$$

Converse of Pythagorean Theorem:

If $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Pythagorean Triple:

*Three whole numbers that satisfy the equation $a^{2}+b^{2}=c^{2}$ where \underline{c} is the greatest number.
*Examples: 3, 4, $5 \quad 6,8,10$

7-2 Pythagorean Theorem

Example 1:

Solve for c .

Example 2: Find d.

$$
\begin{aligned}
& d^{2}+3^{2}=6^{2} \\
& d^{2}+9=36 \\
& -9=-9 \\
& \hline d^{2}=\sqrt{27} \\
& d=\sqrt{27} \\
& \frac{d=\sqrt{3} \cdot \sqrt{9}}{d+3 \sqrt{3} \cdot m}
\end{aligned}
$$

Example 3:

Solve for e.

$$
\begin{aligned}
& e^{2}+4^{2}=8^{2} \\
& e^{2}+16=64 \\
& \frac{16}{}=16 \\
& e^{2}=\sqrt{48} \\
& e=\sqrt{48} \\
& e=\sqrt{16} \cdot \sqrt{3} \\
& e=1 \sqrt{3}
\end{aligned}
$$

Example 4:
Determine whether each set of measures are the sides of a right triangle. Then state if they form a Pythagorean Triple.
a. $\stackrel{a}{9}, 12$, and $1 \stackrel{c}{5}$

$$
\begin{array}{ll}
a^{2}+b^{2}=c^{2} & \text { yes, right } \Delta \\
9^{2}+12^{2}=15^{2} & \text { yes, pyth. triple } \\
81+144=25 & \\
a^{2} 25=2255 &
\end{array}
$$

b. $21,{ }^{6} 42$, and $54^{\text {c }}$

$$
\begin{aligned}
& 21^{2}+42^{2}=5 y^{2} \quad 10,100^{2} 9 \text { rig ht } A . \\
& 441+1764=2916 \\
& 2205 \% 2916
\end{aligned}
$$

$$
\begin{array}{cc}
a & { }^{b}{ }^{c}{ }^{c} \\
\text { c. } 4 \sqrt{3,} 4^{2} \text { and } 8^{2} & \text { Yes, right } \Delta . \\
(4 \sqrt{3})^{2}+4^{2}=8^{2} & \text { no pyth. triple } \\
4^{2} \cdot(\sqrt{3})^{2} & \\
16 \cdot 3+16=64 & \\
48+16=64 & \\
64=64 &
\end{array}
$$

