The Law of Sines:

*Used to find the missing parts of a triangle when we DO NOT have a right triangle.
*Useful in solving direct and indirect measurement applications
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ or $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
7-6 The Law of Sines

Example 1:

Find p. Round to the nearest tenth.

Example 2:

Find the $\mathrm{m} \angle \mathrm{L}$ to the nearest degree in $\Delta \mathrm{LMN}$ if $\mathrm{n}=7, \mathrm{R}=9$ and $\mathrm{m} \angle \mathrm{N}=43^{\circ}$

7-6 The Law of Sines

Solving a triangle:

*Find the measures of all the angles and sides of a triangle.

The Law of Sines can be used to solve a triangle on the following cases:
*You know the measures of 2 angles and any side of a triangle (AAS or ASA)
*You know the measures of two sides and an angle opposite one of the sides of the triangle (SSA)

Example 3: Solve $\triangle D E F$ if $m \angle D=112^{\circ}$, E $m \angle \mathrm{~F}=8^{\circ}$, and $\mathrm{f}=2$.

Example 4: Solve $\Delta \mathrm{IJL}$ if $\mathrm{m} \angle \mathrm{J}=32^{\circ}, \mathrm{i}=30$ and $\mathrm{j}=16$.

