8-1 Angles of Polygons
Polygon:
*A figure made up of line segments.
Diagonal:

* A segment connecting two nonconsecutive vertices.

8-1 Angles of Polygons

Interior Angle Sum Theorem:

In a convex polygon with n sides,
the sum (S) of the interior angles is
180(n-2).
number of sides
${ }^{5 \cdot n} \mathrm{~S}=180(n-2)$

Sum of Exterior Angles Theorem:

If a polygon is convex, then the sum of the angles is 360°.

8-1 Angles of Polygons

Example 1: Find the sum of the interior angles of a dodecagon.

12 sides
$S=180(n-2)$
$S=180(12-2)$
$5=180(10)$
$5=1800^{\circ}$

Example 2: The measure of an Sides = interior angle of a regular polygon is 135°. Find the number of sides that the polygon has.

$$
\begin{array}{l|l}
135 n & =180(n-2)
\end{array} \frac{135 \cdot \sqrt{180} 1 / 5^{\circ}}{\frac{-135}{450}}
$$

8-1 Angles of Polygons
Example 3:
*Find the measure of each interior angle.

$$
5=180(n-2)
$$

$$
\begin{aligned}
& s=180(4-2) \\
& s=360^{\circ} \\
& +4+5 x+11 x+4+5 x=360 /_{(5 x)^{\circ}}^{(11 x+4)^{\circ}} \\
& 32 x+8
\end{aligned}
$$

$$
\begin{aligned}
32 x+8 & =360 \\
-8 & -8 \\
\frac{32 x}{32} & =\frac{352}{32} \\
x & =11
\end{aligned}
$$

$$
\begin{aligned}
& 5 x \rightarrow 5(11) 5^{\circ}+55^{\circ} \\
& 11 x+4 \rightarrow 11(1)+4=12
\end{aligned}
$$

Example 4: Find the measure of an

 exterior angle and an interior angle of a convex regular nonagon.$$
\begin{array}{r}
\text { Ext: }: \frac{360}{9}=40^{\circ} \\
\frac{-40}{1400}
\end{array}
$$

