8-5 Rhombi and Squares

Rhombus (Plural is Rhombi)

**A quadrilateral with four congruent sides.
*A Special parallelogram (both pairs
 of opposite sides are congruent
*Properties of parallelograms apply (8-2 \& 8-3)
**Opposite sides are parallel.
**Opposite angles are congruent.
**Consecutive angles are supplementary.
**Diagonals bisect each other.
**Each diagonal of a parallelogram
separates the parallelogram into two congruent triangles.

Other properties for a rhombus:

*Diagonals are perpendicular.
*Diagonals bisect both pairs of opposite angles.

8-5 Rhombi and Squares

Square:

*A quadrilateral that is both a rectangle (four right angles) and a rhombus (four congruent sides).
*Properties of parallelograms apply (8-2 \& 8-3)
**Opposite sides are parallel.
**Opposite angles are congruent.
**Consecutive angles are supplementary.
**Diagonals bisect each other.
**Each diagonal of a parallelogram separates the parallelogram into two congruent triangles.
*Properties of Rectangles Apply (8-4)
**Diagonals are congruent.
*Properties of Rhombi Apply (8-5)
**Diagonals are perpendicular.
**Diagonals bisect both pair of opposite angles.

1. Use rhombus LMNP and the given information to find each value.

a. Find y if $\mathrm{m}_{\star} 1=\mathrm{y}^{2}-54$.

b. Find $\mathrm{m}_{\boxed{ }} \mathrm{PNL}$ if

2. Determine whether parallelogram $A B C D$ is a rhombus, a rectangle, or a square for $\mathrm{A}(-2,-1), B(-1,3), C(3,2)$, and $D(2,-2)$. List all that apply. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ $B D=\sqrt{(2--1)^{2}+(-2-3)}$
$B D=\sqrt{(3)^{2}+(-5)^{2}}$
$B D=\sqrt{9+25}=\sqrt{34}$
$A=\sqrt{(3-2)^{2}+(2-1)^{2}}$
$A=\sqrt{25+9}=\sqrt{34}$

