Transformation:

9-1 Reflections

* One-to-one correspondence between the preimage and the image.
* Every point in the original goes to only one point in the new figure.
* Examples of Transformations: reflections, translations, rotations, and dilations.

Preimage-

* The figure we start with.

Image:

* The figure we end up with.
* The points will be labeled with a prime symbol (usually). $\mathrm{Y}^{\prime}, \mathrm{X}^{\prime}$

Reflection:

*Transformation that flips a figure.

* Can be reflected over a point, line, or plane.

Line of Reflection:

* The line we reflect over.
* If a point is on the reflecting line, it will stay on the reflecting line.
* Always reflect over the line at a 90° angle.

Isometry:

* A congruence transformation.
* A reflection is an isometry.

Reflections will preserve distance, angle measure, collinearity, and betweenness of points. The image is congruent to the preimage.

1.) Graph the point $(-3,5)$ and its image after ar reflection over the x-axis.

Reflection over the x-axis:

* Changes the y-coordinate.
* Multiply the y-coordinate by -1 .
* $A(x, y)$ then $A^{\prime}(x,-y)$.
2.) Graph the point $(-3,5)$ and its image after ar reflection over the y-axis.

Reflection over the y-axis:

* Changes the x-coordinate.
* Multiply the x-coordinate by -1 .
* $A(x, y)$ then $A^{\prime}(-x, y)$.
3.) Graph the point $(-3,5)$ and its image after a reflection over the origin.

Reflection in the origin:

* Both signs switch. (Multiply both x and y by -1)
* $A=(x, y) \quad A^{\prime}=(-x,-y)$
4.) Graph the point $(-3,5)$ and its image after ar reflection over the line $y=x$.

Reflection over the line $\mathbf{y}=\mathbf{x}$:

* Changes the positions of the coordinates.
* $A(x, y)$ then $A^{\prime}(y, x)$.
5.) Graph the image of $A B C D$ which is a reflection over the line $y=x$.

$$
\begin{aligned}
& A(1,2) \rightarrow A^{\prime}(2,1) \\
& Q(3,5) \rightarrow B^{\prime}(5,3) \\
& C(4,-3) \rightarrow C^{\prime}(-3,4) \\
& D(2,-5) \rightarrow D^{\prime}(-5,2)
\end{aligned}
$$

