

Scale factors with the following will result in a dilation:
 If $|r|>1$, expansion (enlargement)

If $|r|<1$, contraction (reduction)

If $|r|=1$, congruence
transformation (no size change)

Similarity Transformation:

* Dilations will preserve: angle measure, betweenness, and collinearity.
* Distance is not preserved.
* Produce figures that look similar.

If a dilation with center C and a scale factor r transforms A to E and B to D, then $E D=|r|(A B)$.

The distance of segment ED is the distance of segment AB times r (the scale factor).

Ex 1) Find the measure of the dilation image or pre-image of CD using the given scale factor:
a) $C D=15, r=3$

$c^{\prime} b^{\prime}=131 \cdot 15=45$
b) $C^{\prime} D^{\prime}=7, r=-2 / 3$

If $r>0, P^{\prime}$ will be on the ray $C P$ and $C P^{\prime}=r(C P)$.
 $e x: r=2$

If $r<0$, P^{\prime} lies on ray CP^{\prime}, the ray opposite ray CP , and $\mathrm{CP}^{\prime}=|r|(\mathrm{CP})$. (This means it will go to the opposite side of the center point.)

Ex 2) Draw the dilation image of trapezoid PQRS with center C and $r=-3$.

Ex 3) Determine the scale factor used for the dilation with center C. Determine whether the dilation is an enlargement, reduction, or congruence transformation.
$L^{\prime} m^{\prime}=|r| L M$

Ex 4) Trapezoid EFGH has vertices $\mathrm{E}(-8,4), \mathrm{F}(-4,8), \mathrm{G}(8,4)$ and $\mathrm{H}(-4,-8)$. Find the image of trapezoid EFGH after a dilation centered at the origin with a scale factor of $1 / 4$. Sketch the pereimage and the image.

Homework: skip 33-35

