Equal Vectors:

* Two vectors are equal iff they have the same magnitude (length) and direction.

Equal Vectors
Not Equal Vectors

Parallel Vectors: * Two vectors are parallel iff they have the same or opposite directions.

Parallel Vectors

Not Parallel Vectors

Resultant:

* The sum of two vectors that have been added together.
* Add the corresponding components (x - and y -
values)

$$
\begin{aligned}
& \vec{a}=\left\langle x_{1}, y_{1}\right\rangle \text { and } \vec{b}=\left\langle x_{2}, y_{2}\right\rangle \\
& \vec{a}+\vec{b}=\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle \\
& \vec{b}+\vec{a}=\left\langle x_{2}+x_{1}, y_{2}+y_{1}\right\rangle
\end{aligned}
$$

Vectors can be used to describe translations.

Example 1: $A(-3,-1)$ and $B(-1,-2)$. What are the image points under the translation $\overline{\mathrm{v}}=\langle 4,3\rangle$.

$$
\begin{aligned}
& A+\vec{v}=\langle-3+4,-1 \times 3\rangle-<1,2\rangle \\
& B \times \vec{v}=\langle-1+4,-2+3\rangle=3,1\rangle
\end{aligned}
$$

Example 2: Find the magnitude and direction of each resultant for the given vectors.

Example 3: Graph the image of the figure under a translation by the given vectors.
$\triangle A B C$ with vertices $A(3,6), B(3,-7), C(-6,1) ; \quad K=<0,-6>$

Scalar Multiplication:

* When a vector is multiplied by a positive scalar (scale factor).
* Each component (x - and y values) will be multiplied by
the scalar value.

Example: $A=<4,-8>$ Find 5 A .

