

Ex 2) Find $(f / g)(x)$ and $(g / f)(x)$ and their domains. $f(x)=\sqrt{(x)}$ and $g(x)=\sqrt{\left(4-x^{2}\right)}$
$\frac{f}{g}(x)=\frac{\sqrt{x}}{\sqrt{4-x^{2}}} 0:(0,2)$
Doff: $x \geq 0[0, \infty)(-2,2)$
Dor : $\begin{array}{lll}4-x^{2}>0 & x^{2}<4 \quad-2<x<2 \\ -x^{2}>-4 & x< \pm 2\end{array}$
II. Compositions of Functions--combining 2 functions to form the composition of one with the other. $f \cdot g$ read f of $g \quad f \circ g$ ***The domain of the composition is derived from 2 places. Look at the end result and the function you are substituting in.

Ex 3) Find $f(g(x))$, $f(g(2))$, and $f(g(0))$.

$$
\begin{aligned}
\begin{array}{rl}
\text { Ex 3) Find } f(g(x)), f(g(2)) \text { and } f(g(0)) . \\
f(x)=\sqrt{(1)} \text { and } g(x)=x-1 & f(g(0))
\end{array} & =\sqrt{0-1} \\
f(g(x)) & =f(x-1) \\
& =\sqrt{x-1}
\end{aligned}
$$

$$
f(g(2))=\sqrt{2-1}
$$

$$
=\sqrt{1}
$$

$$
=1
$$

$$
\left.\begin{array}{rl}
\text { Ex } 4) f(x) & =x+2 \text { and } g(x)=4-x^{2} \text {. Evaluate } g(f(x)) \text { and when } x=0,1,2 . \\
g((x))) & =g(x+2) \\
& =4-(x+2)^{2} \\
& =4-\left(x^{2}+4 x+4\right) \\
g(x))^{2} & =-x^{2}-4 x \\
x=1:-(1)^{2}-4(y)= \\
-1-4=1-5 \\
x=2:-(2)^{2}-4(2)= \\
& -4-0
\end{array}\right)
$$

