
<u>Day 2 on 11-2</u>
<u>One-sided Limits</u> : lim $f(x) = L$ lim $f(x) = L$
x→c° x→c°right
Ex 6) Find the limit as x approaches 0 from left and as x approaches 0 from the right if $f(x) = \frac{12x1}{x}$ $\lim_{x \to 0^+} \frac{12x1}{x} = -2$ $\lim_{x \to 0^+} \frac{12x1}{x} = 2$
Existence of a limit $x \neq p$ $x = D.N.E.$
Existence of a Limit If f is a function and c and L are real numbers, then $\lim_{x \to c} f(x) = L$ if and only if both right and left limits exist and are equal to L. $x \to c$
Ex 7) Find the limit of $f(x)$ as x approaches 1 if $f(x) = 4 - x$, $x < 1$
$\lim_{X \to 1^{-}} \frac{4x - x^{2}, x > 1}{2}$
$\lim_{ X \to T } \frac{4}{x} = 4(1) - (1)^{2} = 4 - 1 = 3$
$\lim_{ X \to 1} F(x) = 3$

 $\lim_{h \ge 0} \frac{f(x+y)-f(x)}{h}$ B) $f(x) = \sqrt{x - 2}$ 11m (1x+h-2-1x-2) (1x+h-2+1x-2) h (1x+h-2+vx-2) h≫o $\lim_{h \to 0} \frac{x + h - 2 - (x - 2)}{h(\sqrt{x + h - 2} + \sqrt{x - 2})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x + h - 2} + \sqrt{x - 2})}$ = lim X+1-2 +x-2 h≥o $= \frac{1}{\sqrt{\chi + 0 - 2} + \sqrt{\chi - 2}}$ $= \frac{1}{\sqrt{\chi - 2} + \sqrt{\chi - 2}} = \frac{1}{\sqrt{\chi - 2} + \sqrt{\chi - 2}}$