11.3 The Tangent Line Problem

Day 1
Skip 33
Calculus is a branch of math that studies rates of change of functions.
(They do have applications in real life.)
*rates of change and slope...see page 763
There is a more precise method which we will be doing...
Definition for slope of a graph (page 765)
The slope m of the graph of f at the point $(x, f(x))$ is equal to the slope of its tangent line at ($x, f(x)$) and is given by

$$
m=\lim _{h \rightarrow 0} m s e c=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Provided the limit exists.

Ex 1) Find the slope of the graph of $f(x)=x^{2}$ at the point $(-2,4)$.

Ex 2) Find the slope of $f(x)=-2 x+4$ using the definition.

$$
m_{\text {sec }}=\frac{f(x+h)-f(x)}{h}
$$

$$
=\frac{-2(x+h)+4-(-2 x+4)}{h}
$$

$$
=\frac{-2 x-2 h+y+2 x-4}{h}
$$

$$
=\frac{-2 K}{\not K}=-2
$$

Ex 3) Find a formula for the slope of $f(x)=x^{2}+1$. What is the slope at the points $(-1,2)$ and $(2,5)$?

