11-5 The Area Problem
Day 1
Objective: Find limits of summations.
Use rectangles to approximate areas of plane regions Use limits of summations to find areas of plane regions.

Summation Formulas and Properties (page 782)

1. $\sum_{i=1}^{n} c=c \cdot n$

$$
\mathrm{c}=\text { constant }
$$

2.

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

3.

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

4.

$$
\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

5.

$$
\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}
$$

6.

$$
\begin{aligned}
& \text { Bx) } \sum_{i=1}^{n} \frac{1}{m}=\frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}=\frac{1}{n_{i}^{2}}\left[\frac{n^{2}\left(n+v^{2}\right.}{4}\right] \\
& =\frac{n^{2}+2 n+1}{4 n^{2}}
\end{aligned}
$$

a) Rewrite as a rational function.
b) Complete the table.

n	$10^{0}=1$	101	102	10^{3}
$s(n)$		$0.302510 .255^{2}$	0.25050025	
c) Find the	$\lim _{n \rightarrow \infty} s(n)=\frac{1}{4}$			

Area of a Plane Region--see example 4, page 785. You can get a negative area when under x axis, just change it to positive. width bounded by

$$
\begin{aligned}
& \sum_{i=1}^{8} f\left(\frac{0+2}{0} \frac{(2-0) i}{8}\right)\left(\frac{2-0}{8}\right)=\sum_{i=1}^{8} f\left(\frac{1}{4} i\right)\left(\frac{1}{4}\right) \\
& =\sum_{i=1}^{8} \frac{1}{4}\left(\frac{1}{4} i^{3}\right)^{3}\left(\frac{1}{4}\right)=\sum_{i=1}^{8} \frac{1}{4} \cdot \frac{1}{64} i^{3} \cdot \frac{1}{4}=\sum_{i=1}^{8} \frac{1}{1024^{3}} \\
& \frac{1}{1024} \sum_{i=1}^{8} i^{3}=\frac{1}{10} \int^{3} n^{2}(n+1)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1024} \sum_{i=1}^{8} i^{3}=\frac{1}{1024}\left[\frac{n^{2}(n+1)^{2}}{4}\right] \\
& =\frac{1}{1024}\left[8^{2}(8 \times 1)^{2} 7\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{1024}\left[\frac{8^{2}(8 \times 1)^{2}}{4}\right] \\
& =1.265625
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Ex 6) See \#21 on page 788. Complete the table showing the approximate area } \\
\text { of the region in the graph using } n \text { rectangles of equal width. }
\end{array} \\
& \begin{array}{l}
\text { A) } f(x)=(1 / 9) x^{3} \\
\text { of the region in the graph using } n \text { rectangles of equal width. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A=\sum_{i=1}^{n} f\left(0+\left(\frac{3-0}{n}\right) i\right)\left(\frac{3-0}{n}\right) \\
& =\sum_{i=1}^{n} f\left(\frac{3 i}{4}\right) \cdot\left(\frac{3}{4}\right) \\
& =\sum_{i=1}^{n} \frac{1}{9}\left(\frac{3 i}{1}\right)^{3} \cdot \frac{3}{4} \\
& =\sum_{i=1}^{n} \frac{1}{i} \cdot \frac{3^{3}}{n^{3} i^{3}} \cdot \frac{3}{n} \\
& A=\frac{9(n+1)^{2}}{4 n^{2}} \\
& =\sum_{i=1}^{n} \frac{9 i^{3}}{n^{4}} \\
& =\frac{9}{n^{4}} \sum_{i=1}^{n} i^{3} \\
& \begin{array}{l}
=\frac{9}{n_{1}}\left[\frac{n^{2}(n+1)^{2}}{4}\right] \\
A=\frac{9(n+1)^{2}}{n}
\end{array} \\
& A=\frac{9(n+1)^{2}}{4 n^{2}}
\end{aligned}
$$

